Skip to main content
Log in

Assessment of the Whole Environmental Degradation of Oxo-Biodegradable Linear Low Density Polyethylene (LLDPE) Films Designed for Mulching Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The current paper is aimed at understanding the environmental fate of linear low density polyethylenes (LLDPE) films designed for mulching purposes and loaded with different pro-degradant additives. These were analyzed, upon exposure to natural sunlight for a period intended to mimick a general crop season in the mediterranean region. The selected samples underwent a relatively low extent of degradation as monitored by carbonyl index, molecular weight variation, extractability by solvent, changes in the onset of the decomposition temperature and crystallinity. The tendency to biodegradation of outdoor exposed LLDPE was then assessed under different environmental compartments including soil medium, aqueous medium as well as in axenic culture of white-rot fungus Phanerochaete chrysosporium. That fungus is known to be effective in the degradation of recalcitrant organic materials and plastic items. During the soil burial biodegradation test, lasted for 27 months, samples specimen were withdrawn at time intervals and characterized by means of structural and thermal analysis. These analytical assessments allowed to monitor any progress of oxidative degradation as a direct effect of the incubation in an active microbial environment. Analogous characterizations were carried out at the end of the biodegradation tests in aqueous medium and in P. chrysosporium axenic cultures. Data presented here are in keeping with the initial abiotic oxidation via a free radical chain reaction promoted by a pro-degradant additive acting on hydroperoxides and peroxide moieties present initially in the polymer bulk. This step was followed by a free radical cascade reactions leading to degradation once the oxidation started under relatively mild conditions (sunlight exposure). During the incubation step in soil, the abiotically degraded samples underwent significant variation in the level of oxidation and degradation with respect to the detected starting values. Indications were gained on the synergistic effect of a random fashion microbial metabolization coupled to biotically mediated oxidation of the original abiotically fragmented samples. Similar results were obtained in the biodegradation tests carried out in the aqueous media and in presence of P. chrysosporium axenic cultures. These evidences are suggesting the role of natural occurring microorganisms in promoting both partial oxiditation and degradation of LLDPE samples in combination with contextual mineralization process of the oxidized fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kyrikou I, Demetres B (2007) J Polym Environ 15:125

    Article  CAS  Google Scholar 

  2. Briassoulis D (2005) Polym Degrad Stab 88:489

    Article  CAS  Google Scholar 

  3. von Elsner B, Briassoulis D, Waaijenberg D et al (2000) J Agr Eng Res 75:1

    Article  Google Scholar 

  4. Dilara PA, Briassoulis D (1998) Polym Test J 17:549

    Article  CAS  Google Scholar 

  5. G. Scott (1995) In: Scott G, Gilead D (eds) Introduction to the abiotic degradation of carbon chain polymers. In: Degradable polymers: principles and applications. Chapman & Hall, London

  6. Al-Malaika S, Scott G (1983) In: Allen NS (ed) Degradation and stabilisation of polyolefins. Applied Science Publishers, London

    Google Scholar 

  7. Wiles DM, Scott G (2006) Polym Degrad Stab 91:1581

    Article  CAS  Google Scholar 

  8. Billingham NC, Calvert PD, Allen NS (1983) In: Allen NS (ed) Degradation and stabilization of polyolefins. Applied Science Publishers, London

    Google Scholar 

  9. Scott G, Wiles DM (2001) Biomacromolecules 2:615

    Article  CAS  Google Scholar 

  10. Scott G (1994) In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Amsterdam, Elsevier, pp 79–91

    Google Scholar 

  11. Scott G, Gilead D (1978) British Patent 1, 588:344

  12. Scott D, Gilead D (1982) In: Scott G (ed) Developments in polymer stabilisation. Applied Science Publishers, London, pp 71–106

  13. Fabbri A (1995) In: Scott G, Gilead D (eds) Degradable polymers: principles and applications, 1st edn. Chapman & Hall, Chapter 10

  14. Guillet JE (1973) US patent 3, pp 753–952

  15. Guillet JE (1973) in: J.E. Guillet ed. Polymers and ecological problems. Polymers with controlled life times. Plenum, New York

    Google Scholar 

  16. Roy PK, Sureka P, Rajagopal C, Chatterejee SN, Choudhary V (2006) Polym Degrad Stab 91:1791

    Article  CAS  Google Scholar 

  17. Osawa P, Kurisu N, Nagashima K, Nankano K (1979) J Appl Polym Sci 23:3583

    Article  CAS  Google Scholar 

  18. Khabbaz F, Albertsson A-C, Karlsson S (1999) Polym Degrad Stab 63:127

    Article  CAS  Google Scholar 

  19. Karlsson S, Hakkarainen M, Albertsson A-C (1997) Macromolecules 30:7721

    Article  CAS  Google Scholar 

  20. Roy PK, Surekha P, Rajagopal C, Chatterjee SN, Choudhary V (2005) Polym Degrad Stab 90:577

    Article  CAS  Google Scholar 

  21. Setnescu R, Silviu J, Osawa Z (1998) Polym Degrad Stab 60:377

    Google Scholar 

  22. Weiland M, Daro A, David C (1995) Polym Degrad Stab 48:275

    Article  CAS  Google Scholar 

  23. Jakubowicz I, Yarahmadi N, Arthurson V (2011) Polym Degrad Stab 96:919

    Article  CAS  Google Scholar 

  24. Chiellini E, Corti A, D’Antone S (2007) Polym Degrad Stab 92:1378

    Article  CAS  Google Scholar 

  25. Koutny M, Sancelme M, Dabin C, Pichon N, Delort A-M, Lemaire J (2006) Polym Degrad Stab 91:1495

    Article  CAS  Google Scholar 

  26. Corti A, Sudhakar M, Vitali M, Imam SH, Chiellini E (2010) Polym Degrad Stab 95:1106

    Article  CAS  Google Scholar 

  27. Chiellini E, Corti A, Swift G (2003) Polym Degrad Stab 81:341

    Article  CAS  Google Scholar 

  28. ASTM D5272-08 standard practice for outdoor exposure testing of photodegradable plastics, Book of Standards vol. 08.03

  29. Sudhakar M, Doble M, Murthy PS, Venkatesan R (2008) Int Biodeterior Biodegrad 61:203

    Article  CAS  Google Scholar 

  30. Leskovics K, Kollár M, Bárczy P (2006) Mater Sci Eng A 419:138

    Article  Google Scholar 

  31. Erlandsson B, Karlsson S, Albertsson A-C (1997) Polym Degrad Stab 55:237

    Article  CAS  Google Scholar 

  32. Iiyoshi Y, Tsutsumi Y, Nishida T (1998) J Wood Sci 44:222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emo Chiellini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corti, A., Sudhakar, M. & Chiellini, E. Assessment of the Whole Environmental Degradation of Oxo-Biodegradable Linear Low Density Polyethylene (LLDPE) Films Designed for Mulching Applications. J Polym Environ 20, 1007–1018 (2012). https://doi.org/10.1007/s10924-012-0493-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0493-7

Keywords

Navigation