Skip to main content
Log in

Experimental Processing of Biodegradable Drip Irrigation Systems—Possibilities and Limitations

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The increased cost associated with the waste removal and disposal of conventional agricultural plastic in contact with the soil combined with the gradually decreasing cost of the biodegradable plastics allowed the commercialization of biodegradable mulching films. Since the conventional thin wall or tape drip irrigation system lies under the mulching film and is used for one season only, it would be desirable to replace it with a biodegradable one. This paper presents the results of a research work investigating the possibilities and limitations in developing biodegradable drip irrigation thin wall pipes and pipes. The first ever experimental biodegradable drip irrigation thin wall pipes were produced. Rigid pipes were also produced for experimental purposes. Manufacturing problems were encountered in the processing of the biodegradable drippers and irrigation thin wall pipes with the experimental materials due to the complex formulation of the raw materials and the fact that the machinery used was specifically designed for PE processing. Experimental biodegradable thin wall pipes made of Bioflex with embedded drippers made of Mater-Bi were produced. The processing problems encountered with the production of thin wall pipes were surpassed during the experimental production of rigid type irrigation pipes. A biodegradable rigid irrigation pipe made of a grade of Mater-Bi, with embedded cylindrical drippers made of another grade of Mater-Bi was produced successfully. A better understanding of the thermal profile of the biodegradable raw materials and the use of processing equipment adapted to this profile might allow in the future the manufacturing of thin wall drip irrigation pipes for agricultural applications, and the use of alternative biodegradable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Briassoulis D, Hiskakis M, Scarascia G, Picuno P, Delgado C, Dejean C (2010) Qual Assur Saf Crops Foods 2(2):93–104

    Google Scholar 

  2. Estermann R, Schwarzwalder B (2001) Proceedings of the 1st world conference on biomass for energy and industry, 5–9 June 2000, Sevilla, Spain, vol II. James&James Ltd., London, UK, pp 1028–1031. ISBN 1-902916-15-8

  3. Demirbas A (2007) Energy Sourc A 29:419–424

    Article  CAS  Google Scholar 

  4. Garthe JW, Kowal PD (2002) The chemical composition of degradable plastics. Pennstate, College of Agricultural Sciences, U.S. Department of Agriculture, and Pennsylvania Counties Cooperating, Catalog Number: C-17

  5. Briassoulis D (2004) J Polym Envirom 12(2):65–81

    Article  CAS  Google Scholar 

  6. Briassoulis D (2007) Polym Degrad Stabil 92:1115–1132

    Article  CAS  Google Scholar 

  7. Scarascia-Mugnozza G, Schettini E, Vox G (2004) Biosyst Eng 87(4):479–487

    Article  Google Scholar 

  8. Scarascia-Mugnozza G, Schettini E, Vox G, Malinconico M, Immirzi B, Pagliara S (2006) Polym Degrad Stab 91:2801–2808

    Article  CAS  Google Scholar 

  9. APME (Association of Plastic Manufacturers in Europe) (2002) An analysis of plastic consumption and recovery in Western Europe. http://www.plasticseurope.org/. Accessed at 16 April 2009

  10. Solaro R, Corti A, Chiellini E (1998) J Polym Environ 6(4):203–208

    Article  CAS  Google Scholar 

  11. Kyrikou I, Briassoulis D (2007) J Polym Environ 15(2):125–150

    Article  CAS  Google Scholar 

  12. Eurostat—Data Explorer, European Commission. http://ec.europa.eu/eurostat, Rue Alcide de Gasperi LU-2920 Luxembourg, Luxembourg Accessed at 16 April 2009

  13. Congresso Internacional de Plasticos para la Agricultura’ (CIPA) in France for 2006

  14. European (2010) ‘Labelling agricultural plastic waste for valorising the waste stream’, Collective research, LabelAgriWaste, Contract no. 516256-2. http://labelagriwaste.aua.gr/. Accessed at 12 April 2010

  15. Briassoulis D, Babou E, Hiskakis M (2011) J Polym Environ 19(2):341–361

    Article  CAS  Google Scholar 

  16. Eurodrip SA (2010). http://www.eurodrip.gr/. Accessed at 12 April 2010

  17. Total Petrochemicals (2010) Total Lacqtene®2006 TN 35 HDPE pipe coating. http://www.matweb.com/search/datasheettext.aspx?matguid=dacb1b98898c4b2da4c251bdb76178a5. Accessed at 12 April 2010

  18. Dow Europe GmbH (2010) DOWLEX NG 2431 NE polyethylene resin (now replaced by other grades). http://www.dow.com/polyethylene/na/en/prod/dowlex.htm. Accessed at 12 April 2010

  19. Novamont S.p.A. (2010). http://www.novamont.com. Accessed at 12 April 2010

  20. Comite Europeen de Normalisation EN 13432: 2000/AC:2005 (2005) European committee for standardization. EN 13432. Packaging—requirements for packaging recoverable through composting and biodegradation—test scheme and evaluation criteria for the final acceptance of packaging. European Committee for Standardisation, Brussels

  21. Deutsche Normen DIN (1998) DIN V 54900 “Testing of compostability of plastics - Part 1: Chemical testing”, October 1998 edition; Part 2: Testing of the complete biodegradability of plastics in laboratory tests”, September 1998 edition; Part 3: Testing under practice-relevant conditions and a method of testing the quality of the composts”, September 1998 edition, DIN Deutsches Institut fuer Normung, Beuth, Koeln, Berlin

  22. Unificazione Italiana UNI (2001) UNI 10785 Compostabilità dei materiali plastici, Unificazione Italiana, Milano

  23. Vinçotte (2010). http://www.aib-vincotte.com/en/home/. Accessed at 12 April 2010

  24. De Wilde B (2002) Standardisation activities related to measuring biodegradability of plastics in soil and marine conditions. 3–5 February 2002, presentation in international conference “Industrial Applications of Bioplastics” York, United Kingdom

  25. Kapanen A, Schettini E, Vox G, Itavaara M (2008) J Polym Environ 16:2, 109–122

    Google Scholar 

  26. Briassoulis D (2006) Polym Degrad Stab 91:1256–1272

    Article  CAS  Google Scholar 

  27. Briassoulis D (2006) J Polym Environ 14(3):289–307

    Google Scholar 

  28. FKuR Kunststoff GmbH (2010). www.fkur.com, http://www.fkur.com/produkte/bio-flex/bio-flex-f-1130/zertifikate.html. Accessed at 12 April 2010

  29. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87–133

    Article  CAS  Google Scholar 

  30. Ho KL, Pometto AL, Gadea-Rivas A, Briceño JA, Rojas A (2004) Degradation of Polylactic acid (PLA) plastic in Costa Rican soil and Iowa state university compost rows. J Environ Polym Degr 7(4):173–177

    Article  Google Scholar 

  31. Bioplastics24.comFH (2010) Braunschweig/Wolfenbüttel Standort Wolfsburg, IFR—Institut für Recycling. http://www.bioplastics24.com/content/view/71/36/lang,en/. Accessed at 12 April 2010

  32. Kima M, Leea A, Yoonb J, Chin I (2000) Biodegradation of poly(3-hydroxybutyrate), Sky-Green and Mater-Bi by fungi isolated from soils. Eur Polym J 36:1677–1685

    Article  Google Scholar 

  33. EN ISO 527-3 (1995) Plastics—determination of tensile properties—part 3: test conditions for films and sheets. International Organization for Standardization (ISO), Switzerland

  34. Biomer (2010) www.biomer.de Accessed at 12 April 2010

  35. MatWeb (2010) ‘Biomer P209 PHB Biodegradable Polymer’. http://www.matweb.com. Accessed at 12 April 2010

  36. Kaci M, Cimmino S, Lorenzo ML, Silvestre C, Sadoun T (1999) Pure Appl Chem A36(2):253–274

    CAS  Google Scholar 

  37. Briassoulis D (2005) Polym Degrad Stab 88(3):489–503

    Google Scholar 

  38. PATI S.p.A. (2010). http://www.pati.it/. Accessed at 12 April 2010

  39. Dintcheva NT, La Mantia FP, Scaffaro R, Paci M, Acierno D, Camino G (2002) Reprocessing and restabilization of greenhouse films. Polym Degrad Stab 75:459–464

    Google Scholar 

  40. Salem MA (2001) Egypt J Sol 24(2):141–149

    Google Scholar 

  41. Beake BD, Philip H, Shipway C, Graham J, Leggett Β (2004) Wear 256:118–125

    Article  CAS  Google Scholar 

  42. Kampouris M, Papaspyrides K (2002) Polymer Technology/Structure-Polymer Properties, pp 78–82 (in Greek)

  43. Jiang L, Hinrichsen G (1999) Die Angewandte Makromolekulare Chemie 268:18–21

    Article  CAS  Google Scholar 

  44. European Commission, DG Environment (2002) “Evaluation of environmental product declaration schemes”. Final report—Annex X, September 2002. http://ec.europa.eu/environment/ipp/pdf/epdstudy.pdf. Accessed at 12 April 2010

Download references

Acknowledgments

The project was funded by the General Secretariat for Research and Technology, Greece. Thanks are due to N. Bacharidis (Eurodrip’s Project Manager for the biodegradable pipe project) and C. Bolinis (Production Manager) for the production of the pipes at the industrial facilities of Eurodrip as well as to the technical teams of Novamont S.A, FKUR and Biomer for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetres Briassoulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiskakis, M., Babou, E. & Briassoulis, D. Experimental Processing of Biodegradable Drip Irrigation Systems—Possibilities and Limitations. J Polym Environ 19, 887–907 (2011). https://doi.org/10.1007/s10924-011-0341-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0341-1

Keywords

Navigation