Skip to main content
Log in

Influence of cyclic-loading induced fatigue micro-crack growth on generation of nonlinear ultrasonic Lamb waves

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Fatigue damage and micro-cracks growth have been proved to be closely related to the nonlinear effect of ultrasonic Lamb waves propagation in materials. In this paper, the relationship among fatigue life, length and width of micro-cracks, and the acoustic nonlinearity parameter was established. The variation of the acoustic nonlinearity parameter caused by fatigue damage was analyzed based on micro-cracks growth. Considering the multimodal nature of nonlinear Lamb waves, we selected the low-frequency mode pairs S0–s0 and S1–s2 to evaluate fatigue damage in 7075 aluminum alloy plates. Both FE simulations and experiments show that the mode pair S1–s2 is more suitable than S0–s0 for the assessment of fatigue damage. It was found that with increasing fatigue cycles, the relative acoustic nonlinearity parameter A2/A12 firstly increases because the micro-cracks length extends while the micro-cracks width does not change much. The relative acoustic nonlinearity parameter A2/A12 reaches its peak at about 60% of the fatigue life. Then the relative acoustic nonlinearity parameter A2/A12 decreases because of the rapid increase in the micro-cracks width. Our findings clarify the mountain-shape curve between the relative acoustic nonlinearity parameter A2/A12 and the fatigue cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Meyendorf, N.G., Rosner, H., Kramb, V., et al.: Thermo-acoustic fatigue characterization. Ultrasonics 40(1–8), 427–434 (2002)

    Article  Google Scholar 

  2. Cantrell, J.H.: Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals. Proc. Math. Phys. Eng. Sci. 460(2043), 757–780 (2004)

    Article  Google Scholar 

  3. Sagar, S.P., Das, S., Parida, N., et al.: Non-linear ultrasonic technique to assess fatigue damage in structural steel. Scr. Mater. 55(2), 199–202 (2006)

    Article  Google Scholar 

  4. Baby, S., Kowmudi, B.N., Omprakash, C.M., et al.: Creep damage assessment in titanium alloy using a nonlinear ultrasonic technique. Scr. Mater. 59(8), 818–821 (2008)

    Article  Google Scholar 

  5. Cantrell, J.H., Salama, K.: Acoustoelastic characterisation of materials. Int. Mater. Rev. 36(1), 125–145 (1991)

    Article  Google Scholar 

  6. Jhang, K.Y., Kim, K.C.: Evaluation of material degradation using nonlinear acoustic effect. Ultrasonics 37(1), 39–44 (1999)

    Article  Google Scholar 

  7. Deng, M.X., Xiang, Y.X., Liu, L.B.: Time-domain analysis and experimental examination of cumulative second-harmonic generation by primary lamb wave propagation. J. Appl. Phys. 109(11), 1829–1836 (2011)

    Article  Google Scholar 

  8. Liu, M.G., Kim, J.Y., Jacobs, L., et al.: Experimental study of nonlinear rayleigh wave propagation in shot-peened aluminum plates-feasibility of measuring residual stress. NDT and E Int. 44(1), 67–74 (2011)

    Article  Google Scholar 

  9. Doerr, C., Lakocy, A., Kim, J.Y., et al.: Evaluation of the heat-affected zone (haz) of a weld joint using nonlinear rayleigh waves. Mater. Lett. 190, 221–224 (2017)

    Article  Google Scholar 

  10. Shen, Y., Cesnik, C.E.: Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach. Ultrasonics. 74, 106123 (2017)

  11. Wang, Y., Guan, R., Lu, Y.: Nonlinear lamb waves for fatigue damage identification in frp-reinforced steel plates. Ultrasonics 80, 87–95 (2017)

    Article  Google Scholar 

  12. Yang, Y., Ng, C.T., Kotousov, A., et al.: Second harmonic generation at fatigue cracks by low-frequency Lamb waves: experimental and numerical studies. Mech. Syst. Signal Process. 99, 760–773 (2018)

    Article  Google Scholar 

  13. Jhang, K.Y.: Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009)

    Article  Google Scholar 

  14. Chillara, V.K., Lissenden, C.J.: Review of nonlinear ultrasonic guided wave nondestructive evaluation: theory, numerics, and experiments. Opt. Eng. 55(1), 011002.1–011002.15 (2016)

  15. Broda, D., Staszewski, W.J., Martowicz, A., et al.: Modelling of nonlinear crack–wave interactions for damage detection based on ultrasound-a review. J. Sound Vib. 333(4), 1097–1118 (2014)

    Article  Google Scholar 

  16. Zhu, W.J., Xiang, Y.X., Liu, C.J., et al.: Fatigue damage evaluation using nonlinear lamb waves with quasi phase-velocity matching at low frequency. Materials. 11(10), 1920 (2018)

    Article  Google Scholar 

  17. Metya, A.K., Ghosh, M., Parida, N., et al.: Effect of tempering temperatures on nonlinear lamb wave signal of modified 9cr-1Mo steel. Mater. Charact. 107, 14–22 (2015)

    Article  Google Scholar 

  18. Xiang, Y.X., Deng, M.X., Xuan, F.Z.: Creep damage characterization using nonlinear ultrasonic guided wave method: a mesoscale model. J. Appl. Phys. 115(4), 273 (2014)

    Article  Google Scholar 

  19. Jhang, K.Y.: Applications of Nonlinear Ultrasonics to the NDE of Material Degradation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(3), 540–548 (2000)

    Article  Google Scholar 

  20. Kim, C.S., Kim, Y.H., Kim, I.H.: Ultrasonic linear and nonlinear parameters in cyclically deformed Cu and Cu-35Zn alloy. Key Eng. Mater. 297–300(Pt3), 2134–2139 (2005)

    Article  Google Scholar 

  21. Deng, M.X., Pei, J.F.: Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett. 90(12), 273–277 (2007)

    Article  Google Scholar 

  22. Sagar, S.P., Metya, A.K., Ghosh, M., et al.: Effect of microstructure on non-linear behavior of ultrasound during low cycle fatigue of pearlitic steels. Mater. ence Eng. A 528(6), 2895–2898 (2011)

    Article  Google Scholar 

  23. Steven, V.B., Kong, C.W., Francis, R.L.: Experimental investigation of second-harmonic lamb wave generation in additively manufactured aluminum. J. Nondestr. Eval. Diagn. Progn. Eng. Syst. 1(4), 041003 (2018)

    Google Scholar 

  24. Pruell, C., Kim, J.Y., Qu, J., et al.: Evaluation of fatigue damage using nonlinear guided waves. Smart Mater. Struct. 18(3), 035003 (2009)

    Article  Google Scholar 

  25. Jin, H.S., Yan, J.J., Li, W.B., et al.: Monitoring of fatigue crack propagation by damage index of ultrasonic guided waves calculated by various acoustic features. Appl. Sci. 9(20), 4254 (2019)

    Article  Google Scholar 

  26. Jingpin, J., Xiangji, M., Cunfu, H., Bin, W.: Nonlinear lamb wave-mixing technique for micro-crack detection in plates. Ndt & E Int. 85, 63–71 (2017)

    Article  Google Scholar 

  27. Wan, X., Zhang, Q., Xu, G., et al.: Numerical simulation of nonlinear lamb waves used in a thin plate for detecting buried micro-cracks. Sensors 15(5), 8528–8546 (2014)

    Article  Google Scholar 

  28. Shen, Y.F., Wang, J.Z., Xu, W.: Nonlinear features of guided wave scattering from rivet hole nucleated fatigue cracks considering the rough contact surface condition. Smart Mater. Struct. 27(10), 105044 (2018)

    Article  Google Scholar 

  29. Wang, J.W., Shen, Y.F., Rao, D.Y., et al.: An instantaneous-baseline multi-indicial nonlinear ultrasonic resonance spectral correlation technique for fatigue crack detection and quantification. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-020-06128-x

    Article  Google Scholar 

  30. Liu, P.P., Jang, J.H., Yang, S.Y., et al.: Fatigue crack detection using dual laser induced nonlinear ultrasonic modulation. Opt. Lasers Eng. 110, 420–430 (2018)

    Article  Google Scholar 

  31. Viktorov, I.A.: Rayleigh and Lamb Waves: Physical Theory and Applications. Plenum Press, New York (1967)

    Book  Google Scholar 

  32. Li, W.B., Cho, Y.H., Achenbach, J.D.: Detection of thermal fatigue in composites by second harmonic Lamb waves. Smart Mater. Struct. 21(8), 85019–85026 (2012)

    Article  Google Scholar 

  33. Sun, M.X., Xiang, Y.X., Deng, M.X., et al.: Scanning non-collinear wave mixing for nonlinear ultrasonic detection and localization of plasticity. NDT E Int. 93, 1–6 (2018)

    Article  Google Scholar 

  34. Zhu, W.J., Xiang, Y.X., Liu, C.J., et al.: A feasibility study on fatigue damage evaluation using nonlinear Lamb waves with group-velocity mismatching. Ultrasonics 90, 18–22 (2018)

    Article  Google Scholar 

  35. Matlack, K.H., Kim, J.Y., Jacobs, L.J., et al.: Experimental characterization of efficient second harmonic generation of lamb wave modes in a nonlinear elastic isotropic plate. J. Appl. Phys. 109(1), 2141 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12025403, 12004114, U1930202, and 518353003), and the China Postdoctoral Science Foundation (No. 2020M671015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wujun Zhu or Yanxun Xiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, T., Zhu, W., Ma, C. et al. Influence of cyclic-loading induced fatigue micro-crack growth on generation of nonlinear ultrasonic Lamb waves. J Nondestruct Eval 40, 62 (2021). https://doi.org/10.1007/s10921-021-00792-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-021-00792-8

Keywords

Navigation