Skip to main content
Log in

Fractional Fourier Transform Based Adaptive Filtering Techniques for Acoustic Emission Signal Enhancement

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Acoustic emission technique (AET) is a well-known non-destructive testing method used for the detection of crack growth and monitoring structural integrity of components. The main limitation in the application of AET is the fact that acoustic emission (AE) signal is often affected by background noise. A new approach is proposed in this paper to reduce the background noise and to improve the accuracy of AE signal detection. Various noise reduction methods have been applied and studied for AE signal enhancement so far. Some of the studies proved that self-adaptive noise cancellation (SANC) and adaptive noise cancellation (ANC) are better techniques for denoising the AE signal. This paper proposes the use of ANC and SANC schemes based on Fractional Fourier Transform (FrFT) for AE signal enhancement. FrFT is the generalization of the classical Fourier Transform (FT). The use of FrFT gives an advantage of an additional degree of freedom (angle of rotation in time–frequency plane) over the traditional Fourier transform and could provide improved performance. In this method, the noisy signal is rotated in time- frequency plane to extract the signal in Fractional Fourier domain (FrFD). Two adaptive filters viz. least mean squares and normalized least mean squares are studied for FrFD based ANC approach. The performance of the proposed method is validated using real AE signals acquired from three different experiments: pencil lead break test, composite drilling test and concrete compression test. Results are compared with the time and frequency domain adaptations. Moreover, the results have also been compared with the frequency domain adaptation techniques. Results have demonstrated that FrFD based ANC approach outperforms the conventional time domain and frequency domain adaptive filtering with an improved signal to noise ratio and significantly reduces mean square error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Barat, Vera, Borodin, Yrij, Kuzmin, Alexey: Intelligent AE signal filtering methods. J. Acoust. Emiss. 28, 109–119 (2010)

    Google Scholar 

  2. Xiao, D., He, T., Pan, Q., Liu, X., Shan, Y.: Impulsive noise cancellation of acoustic emission signal based on iterative mathematical morphology filter. J. Vibro Eng. 15(4), 1752–1764 (2013)

    Google Scholar 

  3. Mohamed, K., Emmanuel, R., Vincent, P., Lamine, B.: A signal processing approach for enhanced Acoustic Emission data analysis in high activity systems: application to Organic Matrix Composites. Mech. Syst. Signal Process. 70–71, 1038–1055 (2016)

    Google Scholar 

  4. Zhou, C., Zhang, Y.: Particle filter based noise removal method for acoustic emission signals. Mech. Syst. Signal Process. 28, 63–77 (2012)

    Article  Google Scholar 

  5. Chiementin, X., Mba, D., Charnley, B., et al.: Effect of the denoising on acoustic emission signals. J. Vib. Acoust. Trans. ASME 132(3), 031009 (2009)

    Article  Google Scholar 

  6. Widrow, B., Stearns, S.: Adaptive Signal Processing. Prentice Hall, Englewood Cliffs, NJ (1985)

    MATH  Google Scholar 

  7. Chaturvedi, G.K., Thomas, D.W.: Adaptive noise cancelling and condition monitoring. J. Sound Vib. 76(3), 391–405 (1981)

    Article  Google Scholar 

  8. Ruiz-Carcel, C., Hernani-Ros, E., Cao, Y., Corsar, M., Mba, D.: Application of linear prediction, self-adaptive noise cancellation and spectral kurtosis in identifying natural damage of a rolling element bearing in a gearbox. Int. J. Acoust. Vib. 20(1), 15–23 (2015)

    Google Scholar 

  9. Elasha, F., Mba, D., Ruiz-Carcel, C.: A comparative study of adaptive filters in detecting a naturally degraded bearing within a gearbox. Case Stud. Mech. Syst. Signal Process. 3, 1–8 (2016)

    Google Scholar 

  10. Elliott, D.F. (ed.): Handbook of Digital Signal Processing. Academic Press, NewYork (1987)

    MATH  Google Scholar 

  11. Gang, Q., Alan, B., et al.: Discrete wavelet decomposition of acoustic emission signals from carbon-fiber-reinforced composites. Compos. Sci. Technol. 57, 389–403 (1997)

    Article  Google Scholar 

  12. Chountasis, S., Vourdas, Apostol, Bendjaballah, C.: Fractional Fourier operators and generalized Wigner functions. Phys. Rev. A 60, 3467–3473 (1999)

    Article  MathSciNet  Google Scholar 

  13. Ozaktas, H.M., Barshan, B., Mendlovic, D., Onural, L.: Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms. J. Opt. Soc. Am. A 11(2), 547 (1994)

    Article  MathSciNet  Google Scholar 

  14. Tao, R., Deng, B., Wang, Y.: Research progress of the fractional Fourier transform in signal processing. Sci. China Ser. F Inf. Sci. 49(1), 1–25 (2006)

    Article  MathSciNet  Google Scholar 

  15. Sejdić, E., Djurović, I., Stanković, L.: Fractional Fourier transform as a signal processing tool: an overview of recent developments. Signal Process. 91(6), 1351–1369 (2011)

    Article  Google Scholar 

  16. Durak, L., Aldirmaz, S.: Adaptive fractional fourier domain filtering. J. Signal Process. 90, 1188–1196 (2010)

    Article  Google Scholar 

  17. Zhou, X., Shao, Y., Zhen, D., Gu, F., Ball, A.: Gear fault signal detection based on an adaptive fractional Fourier transform filter. J. Phys. 305, 012022 (2011)

    Google Scholar 

  18. Rojas, H.E., Cortes, C.A., Santamaria, F.: Noise reduction of lightening electric fields measurements using filtering in the fractional fourier domain. In: Asia-Pacific International Conference on Lightning, pp. 767–775 (2011)

  19. Lu, Y., Sannie, J.: Adaptive filtering and fractional Fourier transform for ultrasonic signal processing and flaw detection. In: IEEE International Ultrasonic Symposium Proceedings, pp. 1932–1935 (2014)

  20. Xu, L., Kang, Y., Shi, B., Zheng, D.: Research on A LMS adaptive filtering algorithm for acoustic emission signal processing. In: World Congress on Intelligent Control and Automation Proceedings, pp. 7037–7040 (2010)

  21. Xia, J., Zhang, J.-Y., Li, X., Mao, Y.-X.: Weak signal detection based on FRFT domain adaptive filtering algorithm. In: CIE Conference Proceedings (2016)

  22. Hayes, M.H.: Statistical Digital Signal Processing and Modeling. Wiley, New York (2000)

    Google Scholar 

  23. Treichler, J.R., Johnson, C.R., Larimore, M.G.: Theory and Design of Adaptive Filters. Wiley, New York (1987)

    MATH  Google Scholar 

  24. Haykin, S.: Adaptive Filter Theory, 4th edn. Prentice Hall, Upper Saddle River (2001)

    MATH  Google Scholar 

  25. Al-Naggar, N.Q., Al-Udyni, M.H.: Performance of adaptive noise cancellation with normalized last-mean-square based on the signal-to-noise ratio of lung and heart sound separation. J. Healthc Eng. (2018). https://doi.org/10.1155/2018/9732762

    Article  Google Scholar 

  26. Ozaktas, H.M., Kutay, M.A., Mendlovic, D.: Introduction to the fractional Fourier transform and its applications. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 106, pp. 239–291. Academic Press, San Diego, CA (1999)

    Google Scholar 

  27. Narayanan, V.A., Prabhu, K.M.M.: The fractional Fourier transform: theory, implementation and error analysis. Microprocess. Microsyst. 27(10), 511–521 (2003)

    Article  Google Scholar 

  28. Wang, W.-Q.: Moving target indication via three-antenna SAR with simplified fractional fourier transform. EURASIP J. Adv. Signal Process. 1, 1687–6180 (2011)

    Google Scholar 

  29. Qi, L., Zhang, Y., Tao, R., Wang, Y.: Adaptive filtering in fractional Fourier domain. In: MAPE2005: IEEE 2005 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Proceedings 2, pp. 1033–1036 (2005)

  30. Almeida, L.B.: The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  31. Ozaktas, H.M., Zalevsky, Z., Kutay, M.A.: The Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, New York (2001)

    Google Scholar 

  32. Namias, V.: The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 25(3), 241–265 (1980)

    Article  MathSciNet  Google Scholar 

  33. McBride, A.C., Kerr, F.H.: On Namias’s fractional Fourier transforms. MA J. Appl. Math. 39(2), 159–175 (1987)

    MathSciNet  MATH  Google Scholar 

  34. Ozaktas, H.M., Arıkan, O., Kutay, M.A., Bozdagı, G.: Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44, 2141–2150 (1996)

    Article  Google Scholar 

  35. Kutay, M.A., Ozaktas, H.M., Onural, L., Arıkan, O.: Optimal filtering in fractional Fourier domains. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 937–940 (1995)

  36. Mendlovic, D., Ozaktas, H.M., Lohmann, A.W.: Fourier transforms of fractional order and their optical interpretation. In: Proc. Topical Mtg. Optical Comput., OSA Technol. Dig. Series, Washington, DC, pp. 127–130 (1993)

  37. Ozaktas, H.M., Mendlovic, D.: Fourier transforms of fractional order and their optical interpretation. Opt. Commun. 101, 163–169 (1993)

    Article  Google Scholar 

  38. Mendlovic, D., Ozaktas, H.M.: Fractional Fourier transformations and their optical implementation: part I. J. Opt. Soc. Am. A. 10, 1875–1881 (1993)

    Article  Google Scholar 

  39. Ozaktas, H.M., Mendlovic, D.: Fractional Fourier transformations and their optical implementation: part II. J. Opt. Soc. Am. A. 10, 2522–2531 (1993)

    Article  Google Scholar 

  40. Lohmann, A.W.: Image rotation, Wigner rotation and the fractional Fourier transform. J. Opt. Soc. Am. A. 10, 2181–2186 (1993)

    Article  Google Scholar 

  41. Ozaktas, H.M., Mendlovic, D.: Fractional Fourier optics. J. Opt. Soc. Am. A. 12, 743–751 (1995)

    Article  Google Scholar 

  42. Sause, Markus G.R.: Investigation of pencil-lead breaks as acoustic emission sources. J. Acoust. Emiss. 29, 29–184 (2011)

    Google Scholar 

  43. http://spib.linse.ufsc.br/noise.html

Download references

Acknowledgments

Authors would like to thank Dr. A.K. Bhaduri, Director, Indira Gandhi Centre for Atomic Research (IGCAR) and Dr. G. Amarendra, Director, Metallurgy and Materials Group, IGCAR for support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Prajna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajna, K., Mukhopadhyay, C.K. Fractional Fourier Transform Based Adaptive Filtering Techniques for Acoustic Emission Signal Enhancement. J Nondestruct Eval 39, 14 (2020). https://doi.org/10.1007/s10921-020-0658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-0658-6

Keywords

Navigation