Skip to main content
Log in

Distributed Fiber Optics Sensing Applied to Laminated Composites: Embedding Process, Strain Field Monitoring with OBR and Fracture Mechanisms

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Optical fibers (OFs) are among the most promising technologies for distributed sensing in structure health monitoring of composites. Optical backscatter reflectometer (OBR) based on Rayleigh scattering enable to use the entire length of telcom OF as sensor, giving detailed information about the stain fields in the host structure. Embedded sensors can provide many advantages over surface bonded ones in terms of reliability and accuracy of the measurements. Here, OFs were embedded in between (0/0), (0/90) and (90/90) interfaces of a [02/902/02] glass fiber reinforced polymer (GFRP) and were further interrogated with OBR during tensile tests. Sensors were evaluated in terms of its sensing capabilities and fracture mechanism. OFs aligned in between (0/0) direction endured 5500 µε and deviated only 2.7% in the Young’s modulus calculation compared to mounted strain gauges. The other directions presented problems related to matrix rich area (0/90) and air bubbles imprisoning (90/90), reducing the sensing range. After reaching the cracking state, OFs fail progressively and are still capable of acting as sensor, as was showed in a simple visible laser scattering test. For the first time, embedding, interrogation with OBR and fracture mechanisms are approached in a single study, which provide valuable information for wide application of OFs in SHM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jang, B.W., Kim, C.G.: Impact localization of composite stiffened panel with triangulation method using normalized magnitudes of fiber optic sensor signals. Compos. Struct. 211, 522–529 (2019). https://doi.org/10.1016/j.compstruct.2019.01.028

    Article  Google Scholar 

  2. Di Sante, R.: Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications. Sensors. 15, 18666–18713 (2015). https://doi.org/10.3390/s150818666

    Article  Google Scholar 

  3. Herszberg, I., Bannister, M.: Structural Health Monitoring for Advanced Composite Structures. In: 16ICCM (2007)

  4. Mckenzie, I., Karafolas, N.: Fiber optic sensing in space structures: the experience of the European Space Agency (Invited Paper). Proc. SPIE 5855(5855), 262–269 (2005). https://doi.org/10.1117/12.623988

    Article  Google Scholar 

  5. Guemes, A., Fernandez-Lopez, A., Soller, B.: Optical fiber distributed sensing - physical principles and applications. Struct. Heal. Monit. 9, 233–245 (2010). https://doi.org/10.1177/1475921710365263

    Article  Google Scholar 

  6. Minakuchi, S., Takeda, N.: Recent advancement in optical fiber sensing for aerospace composite structures. Photonic Sensors. 3, 345–354 (2013). https://doi.org/10.1007/s13320-013-0133-4

    Article  Google Scholar 

  7. Glisic, B.: Distributed Fiber Optic Sensing Technologies and Applications: An Overview. Am. Concr. Institute, ACI Spec. Publ. pp. 13–30 (2011)

  8. Bao, X., Chen, L.: Recent progress in distributed fiber optic sensors. Sensors (Basel). 12, 8601–8639 (2012). https://doi.org/10.3390/s120708601

    Article  Google Scholar 

  9. Ferreira, M.S., Vieira, J., Frias, C., Frazão, O.: Simultaneous measurement of strain and temperature using fiber Bragg grating sensors embedded in hybrid composite laminates. Meas. Sci. Technol. 22, 045206 (2011). https://doi.org/10.1088/0957-0233/22/4/045206

    Article  Google Scholar 

  10. Kinet, D., Mégret, P., Goossen, K.W., Qiu, L., Heider, D., Caucheteur, C.: Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions. Sensors 14, 7394–7419 (2014). https://doi.org/10.3390/s140407394

    Article  Google Scholar 

  11. Yeager, M., Todd, M., Gregory, W., Key, C.: IWSHM 2015: Assessment of embedded fiber Bragg gratings for structural health monitoring of composites. Struct. Heal. Monit. (2016). https://doi.org/10.1177/1475921716665563

    Article  Google Scholar 

  12. Davis, C., Tejedor, S., Grabovac, I., Kopczyk, J., Nuyens, T.: High-strain fiber bragg gratings for structural fatigue testing of military aircraft. Photonic Sensors 2, 215–224 (2012). https://doi.org/10.1007/s13320-012-0066-3

    Article  Google Scholar 

  13. Grabovac, I., Nuyens, T., Davis, C.: Packaging and Mounting of In-Fibre Bragg Grating Arrays for Structural Health Monitoring of Large Structures. (2010)

  14. Saidi, M., Gabor, A.: Experimental analysis of the tensile behaviour of textile reinforced cementitious matrix composites using distributed fibre optic sensing (DFOS) technology. Constr. Build. Mater. 230, 117027 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117027

    Article  Google Scholar 

  15. Breysse, P.D., Henault, J.-M., Quiertant, M., Delepine-Lesoille, S., Salin, J., Moreau, G., Taillade, F., Benzarti, K.: Quantitative strain measurement and crack detection in RC structures using a truly distributed fiber optic sensing system. Constr. Build. Mater. 37, 916–923 (2012). https://doi.org/10.1016/j.conbuildmat.2012.05.029

    Article  Google Scholar 

  16. Lammens, N., Luyckx, G., Voet, E., Van Paepegem, W., Degrieck, J.: Finite element prediction of resin pocket geometry around embedded optical fiber sensors in prepreg composites. Compos. Struct. 132, 825–832 (2015). https://doi.org/10.1016/j.compstruct.2015.07.003

    Article  Google Scholar 

  17. Luyckx, G., Voet, E., Lammens, N., Degrieck, J.: Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research. Sensors 11, 384–408 (2011). https://doi.org/10.3390/s110100384

    Article  Google Scholar 

  18. Saidi, M., Gabor, A.: Adaptation of the strain measurement in textile reinforced cementitious matrix composites by distributed optical fibre and 2D digital image correlation. Strain 56, 1–18 (2020). https://doi.org/10.1111/str.12335

    Article  Google Scholar 

  19. Saidi, M., Gabor, A.: Experimental analysis and analytical modelling of the textile/matrix interface shear stress in textile reinforced cementitious matrix composites. Compos. Part A 135, 105961 (2020). https://doi.org/10.1016/j.compositesa.2020.105961

    Article  Google Scholar 

  20. Bassil, A., Wang, X., Chapeleau, X., Niederleithinger, E., Abraham, O., Leduc, D.: Distributed fiber optics sensing and coda wave interferometry techniques for damage monitoring in concrete structures. Sensors (2019). https://doi.org/10.3390/s19020356

    Article  Google Scholar 

  21. Bassil, A., Chapeleau, X., Leduc, D., Abraham, O.: Concrete crack monitoring using a novel strain transfer model for distributed fiber optics sensors. Sensors (Switzerland). 20, 1–17 (2020). https://doi.org/10.3390/s20082220

    Article  Google Scholar 

  22. Grave, J.H.L., Håheim, M.L., Echtermeyer, A.T.: Evaluation of the Strain Field in a Composite – Metal Adhesive Joint With an Optical Backscatter. In: ECCM15- 15th Conf. Compos. Mater. 8 (2012)

  23. Davisa, C., Knowlesb, M., Rajica, N., Swanton, G.: Evaluation of a distributed fibre optic strain sensing system for fatigue testing full-scale fatigue testing. Procedia Struct. Integr. 2, 3784–3791 (2016). https://doi.org/10.1016/j.prostr.2016.06.471

    Article  Google Scholar 

  24. Grave, J.H.L., Håheim, M.L., Echtermeyer, A.T.: Measuring changing strain fields in composites with distributed fiber-optic sensing using the optical backscatter reflectometer. Compos. Part B 74, 138–146 (2015). https://doi.org/10.1016/j.compositesb.2015.01.003

    Article  Google Scholar 

  25. Weisbrich, M., Holschemacher, K., Kaeseberg, S.: Comparison between different fiber optical strain measurement systems based on the example of reinforcing bars. Procedia Eng. 172, 1235–1242 (2017). https://doi.org/10.1016/j.proeng.2017.02.145

    Article  Google Scholar 

  26. Zhu, P., Xie, X., Sun, X., Soto, M.A.: Distributed modular temperature-strain sensor based on optical fiber embedded in laminated composites. Compos. Part B 168, 267–273 (2019). https://doi.org/10.1016/j.compositesb.2018.12.078

    Article  Google Scholar 

  27. Motwani, P., Perogamvros, N., Taylor, S., Sonebi, M., Laskar, A., Murphy, A.: Experimental investigation of strain sensitivity for surface bonded fibre optic sensors. Sensors Actuators A (2020). https://doi.org/10.1016/j.sna.2020.111833

    Article  Google Scholar 

  28. Her, S.C., Huang, C.Y.: Effect of coating on the strain transfer of optical fiber sensors. Sensors 11, 6926–6941 (2011). https://doi.org/10.3390/s110706926

    Article  Google Scholar 

  29. Di Sante, R., Donati, L., Troiani, E., Proli, P.: Reliability and accuracy of embedded fiber Bragg grating sensors for strain monitoring in advanced composite structures. Met. Mater. Int. 20, 537–543 (2014). https://doi.org/10.1007/s12540-014-3020-7

    Article  Google Scholar 

  30. Liu, R.M., Zhu, L.: Interfacial strain transfer in embedded optical fibre sensors with eye-shaped interface. Opt. Fiber Technol. 52, 101954 (2019). https://doi.org/10.1016/j.yofte.2019.101954

    Article  Google Scholar 

  31. Sonnenfeld, C., Sulejmani, S., Geernaert, T., Eve, S., Lammens, N., Luyckx, G., Voet, E., Degrieck, J., Urbanczyk, W., Mergo, P., Becker, M., Bartelt, H., Berghmans, F., Thienpont, H.: Microstructured optical fiber sensors embedded in a laminate composite for smart material applications. Sensors 11, 2566–2579 (2011). https://doi.org/10.3390/s110302566

    Article  Google Scholar 

  32. Canal, L.P., Sarfaraz, R., Violakis, G., Botsis, J., Michaud, V., Limberger, H.G.: Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors. Compos. Struct. 112, 241–247 (2014). https://doi.org/10.1016/j.compstruct.2014.02.014

    Article  Google Scholar 

  33. Surgeon, M., Wevers, M.: Static and dynamic testing of a quasi-isotropic composite with embedded optical fibres. Compos. Part A 30, 317–324 (1999). https://doi.org/10.1016/S1359-835X(98)00117-1

    Article  Google Scholar 

  34. Jang, T.A.E.S., Lee, J.J.U., Lee, D.C.: The mechanical behavior of optical fiber sensor embedded within the composite laminate. J. Mater. Sci. 4, 5853–5860 (1999). https://doi.org/10.1023/A:1004778822647

    Article  Google Scholar 

  35. Green, A.K., Shafir, E.: Termination and connection methods for optical fibres embedded in aerospace composite components. Smart Mater. Struct. 8, 269–273 (1999). https://doi.org/10.1088/0964-1726/8/2/013

    Article  Google Scholar 

  36. Benchekchou, B., Ferguson, N.S.: The effect of embedded optical fibres on the fatigue behaviour of composite plates. Compos. Struct. 41, 113–120 (1998). https://doi.org/10.1016/S0263-8223(98)00034-8

    Article  Google Scholar 

  37. Skontorp, A.: Effect of Embedded Optical Fibers on the Structural Integrity of Composites. In: Twelfth International Conference on Composite Materials, ICCM-12. p. 761. Paris (1999)

  38. Rev, T., Jalalvand, M., Fuller, J., Wisnom, M.R., Czél, G.: A simple and robust approach for visual overload indication - UD thin-ply hybrid composite sensors. Compos. Part A 121, 376–385 (2019). https://doi.org/10.1016/j.compositesa.2019.03.005

    Article  Google Scholar 

  39. Alvarez-Montoya, J., Carvajal-Castrillón, A., Sierra-Pérez, J.: In-flight and wireless damage detection in a UAV composite wing using fiber optic sensors and strain field pattern recognition. Mech. Syst. Signal Process. 136, 106526 (2020). https://doi.org/10.1016/j.ymssp.2019.106526

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge FAPESP-São Paulo Research Foundation for financial support (Processes 2014/00099-0 and 2015/25554-4) and Prof. Dr. Andreas Echtermeyer, NTNU-Norway, for full support during BEPE internship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Souza.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, G., Tarpani, J.R. Distributed Fiber Optics Sensing Applied to Laminated Composites: Embedding Process, Strain Field Monitoring with OBR and Fracture Mechanisms. J Nondestruct Eval 39, 77 (2020). https://doi.org/10.1007/s10921-020-00720-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00720-2

Keywords

Navigation