Skip to main content
Log in

Solving the Inverse Heat Conduction Problem in Using Long Square Pulse Thermography to Estimate Coating Thickness by Using SVR Models Based on Restored Pseudo Heat Flux (RPHF) In-Plane Profile

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This research develops a method to estimate opaque coating thickness based on time-and-space-resolved thermography. Thermography is a viable technique for measuring coating thickness. However, time-resolved thermography becomes unreliable when uncontrolled constant thermal stimulation amplitude appears. Therefore, a time- and space-resolved thermography technique for coating thickness measurement called restored pseudo heat flux (RPHF) has been developed by using Fourier–Hankel transform. A non-dimensional analysis was conducted and the results show RPHF curves with different coating thicknesses converging as the thermal diffusivity ratio or thermal conductivity ratio goes to one. For large thermal conductivity ratio values, the RPHF curves have two inflection points along the non-dimensional radius. Fifty-nine samples were tested using the proposed method. Support vector regression (SVR) models were constructed with the in-plane distribution of RPHF and the temporal distribution of the measured surface temperature as inputs. To avoid overfitting, cross validation was applied to all the models. Later, another twenty-eight samples were tested to validate the SVR models. The results suggest that a support vector regression model with in-plane profiles of RPHF handles uncontrolled heat flux variation better and yields a better performance in coating thickness measurement than the temporal profile does. With in-plane RPHF profile as input, the SVR model can evaluate coating thickness with a relative root mean square error at 25.3% even when heat amplitude varies 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bison, P.G., Cernuschi, F., Grinzato, E.: Ageing evaluation of thermal barrier coating: comparison between pulsed thermography and thermal wave interferometry. Quant. InfraRed Thermogr. J. 3(2), 169–181 (2006). https://doi.org/10.3166/qirt.3.169-182

    Article  Google Scholar 

  2. Osiander, R., Spicer, J.W.: Time-resolved infrared radiometry with step heating. A review. Revue Générale de Thermique 37(8), 680–692 (1998). https://doi.org/10.1016/S0035-3159(98)80046-9

    Article  Google Scholar 

  3. Aamodt, L., Spicer, J.M., Murphy, J.: Analysis of characteristic thermal transit times for time-resolved infrared radiometry studies of multilayered coatings. J. Appl. Phys. 68(12), 6087–6098 (1990). https://doi.org/10.1063/1.346897

    Article  Google Scholar 

  4. Reimche W, Duhm R (2006) Non‐destructive testing and assessment of coatings. Modern Surface Technology:297-321. https://doi.org/10.1002/3527608818.ch19

    Chapter  Google Scholar 

  5. Pilla, M., Klein, M., Maldague, X., Salerno, A.: New absolute contrast for pulsed thermography. In: Proceedings of QIRT (2002)

  6. Omar, M., Hassan, M., Saito, K., Alloo, R.: IR self-referencing thermography for detection of in-depth defects. Infrared Phys. Technol. 46(4), 283–289 (2005). https://doi.org/10.1016/j.infrared.2004.04.005

    Article  Google Scholar 

  7. Mackey RME (1997) Soap film thickness imaging by infrared methods

  8. Cogdill, R.P., Forcht, R.N., Shen, Y., Taday, P.F., Creekmore, J.R., Anderson, C.A., Drennen, J.K.: Comparison of terahertz pulse imaging and near-infrared spectroscopy for rapid, non-destructive analysis of tablet coating thickness and uniformity. Journal of Pharmaceutical Innovation 2(1–2), 29–36 (2007). https://doi.org/10.1007/s12247-007-9004-0

    Article  Google Scholar 

  9. Parvataneni R (2009) Principal component thermography for steady thermal perturbation scenarios. Clemson University,

  10. Legaie D, Pron H, Bissieux C, Blain V Thermographic application of black coatings on metals. In: 9th International Conference on Quantitative InfraRed Thermography Krakow, Poland, 2008. vol 2. p 5

  11. Sun, J.: Analysis of pulsed thermography methods for defect depth prediction. J. Heat Transfer 128(4), 329–338 (2006)

    Article  Google Scholar 

  12. Decker, C.A., Mackin, T.J.: Measuring film thickness using infrared imaging. Thin Solid Films 473(2), 196–200 (2005). https://doi.org/10.1016/j.tsf.2004.04.058

    Article  Google Scholar 

  13. Chirtoc M, Gibkes J, Walther H, Christ A, Antoniow J, Bicanic D, Bozoki Z, Szabo G, Bein B, Pelzl J Comparative study of coating thickness determination in packaging composite materials using photothermal radiometry, photoacoustic and photopyroelectric methods. In: Analytical Sciences/Supplements Proceedings of 11th International Conference of Photoacoustic and Photothermal Phenomena, 2002. The Japan Society for Analytical Chemistry, pp s185-s188

  14. Larkin, L., Smoyer, J., Norris, P.: Laser repetition rate in time-domain thermoreflectance techniques. Int. J. Heat Mass Transf. 109, 786–790 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.047

    Article  Google Scholar 

  15. Fisk TE (2017) Coating inspection method. Google Patents,

  16. Rosencwaig A, Opsal J (1985) Thin film thickness measurement with thermal waves. Google Patents,

  17. Commandre, M., Roche, P.: Characterization of optical coatings by photothermal deflection. Appl. Opt. 35(25), 5021–5034 (1996). https://doi.org/10.1364/AO.35.005021

    Article  Google Scholar 

  18. Al Mohtar, A., Tessier, G., Ritasalo, R., Matvejeff, M., Stormonth-Darling, J., Dobson, P.S., Chapuis, P.O., Gomès, S., Roger, J.P.: Thickness-dependent thermal properties of amorphous insulating thin films measured by photoreflectance microscopy. Thin Solid Films 642, 157–162 (2017). https://doi.org/10.1016/j.tsf.2017.09.037

    Article  Google Scholar 

  19. Yamane, T., Nagai, N., S-i, Katayama, Todoki, M.: Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. J. Appl. Phys. 91(12), 9772–9776 (2002). https://doi.org/10.1063/1.1481958

    Article  Google Scholar 

  20. Yamane, T., Si, Katayama, Todoki, M., Hatta, I.: Thermal diffusivity measurement of single fibers by an ac calorimetric method. J. Appl. Phys. 80(8), 4358–4365 (1996). https://doi.org/10.1063/1.363394

    Article  Google Scholar 

  21. Cernuschi, F., Bison, P., Figari, A., Marinetti, S., Grinzato, E.: Thermal diffusivity measurements by photothermal and thermographic techniques. Int. J. Thermophys. 25(2), 439–457 (2004). https://doi.org/10.1023/B:IJOT.0000028480.27206.cb

    Article  Google Scholar 

  22. Bison, P., Cernuschi, F., Grinzato, E., Marinetti, S., Robba, D.: Ageing evaluation of thermal barrier coatings by thermal diffusivity. Infrared Phys. Technol. 49(3), 286–291 (2007). https://doi.org/10.1016/j.infrared.2006.06.019

    Article  Google Scholar 

  23. Toivanen, J.M., Kolehmainen, V., Tarvainen, T., Orlande, H.R.B., Kaipio, J.P.: Simultaneous estimation of spatially distributed thermal conductivity, heat capacity and surface heat transfer coefficient in thermal tomography. Int. J. Heat Mass Transf. 55(25), 7958–7968 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.024

    Article  Google Scholar 

  24. Toivanen, J.M., Tarvainen, T., Huttunen, J.M.J., Savolainen, T., Orlande, H.R.B., Kaipio, J.P., Kolehmainen, V.: 3D thermal tomography with experimental measurement data. Int. J. Heat Mass Transf. 78, 1126–1134 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.080

    Article  Google Scholar 

  25. Toivanen, J.M., Tarvainen, T., Huttunen, J.M.J., Savolainen, T., Pulkkinen, A., Orlande, H.R.B., Kaipio, J.P., Kolehmainen, V.: Thermal tomography utilizing truncated Fourier series approximation of the heat diffusion equation. Int. J. Heat Mass Transf. 108, 860–867 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.060

    Article  Google Scholar 

  26. Movahedian, B., Boroomand, B.: The solution of direct and inverse transient heat conduction problems with layered materials using exponential basis functions. Int. J. Therm. Sci. 77, 186–198 (2014). https://doi.org/10.1016/j.ijthermalsci.2013.10.021

    Article  Google Scholar 

  27. Kaipio, J.P., Fox, C.: The Bayesian framework for inverse problems in heat transfer. Heat Transfer Eng. 32(9), 718–753 (2011). https://doi.org/10.1080/01457632.2011.525137

    Article  Google Scholar 

  28. Wang H, Hsieh S-J Estimating non-metallic coating thickness using artificial neural network modeled time-resolved thermography: capacity and constraints. In: SPIE Sensing Technology+ Applications, 2014. International Society for Optics and Photonics, pp 91050 K-91050 K-91059

  29. Wang, H., Hsieh, S.-J., Peng, B., Zhou, X.: Non-metallic coating thickness prediction using artificial neural network and support vector machine with time resolved thermography. Infrared Phys. Technol. 77, 316–324 (2016). https://doi.org/10.1016/j.infrared.2016.06.015

    Article  Google Scholar 

  30. Wang, H., Hsieh, S.-J., Stockton, A.: Evaluating the performance of artificial neural networks for estimating the nonmetallic coating thicknesses with time-resolved thermography. Opt. Eng. 53(8), 083102–083102 (2014)

    Article  Google Scholar 

  31. Poularikas, A.D.: Transforms and applications handbook. CRC Press, Piscataway (2010)

    Book  Google Scholar 

  32. Moorhead MS (2009) Estimating the thermal properties of thin film and multilayer structures using photothermal deflection spectroscopy. Cornell University,

  33. Shendeleva, M.L.: Thermal wave reflection and refraction at a plane interface: two-dimensional geometry. Physical Review B 65(13), 134209 (2002). https://doi.org/10.1103/PhysRevB.65.134209

    Article  Google Scholar 

  34. Rantala, J., Wu, D., Busse, G.: NDT of polymer materials using lock-in thermography with water-coupled ultrasonic excitation. NDT and E Int. 31(1), 43–49 (1998). https://doi.org/10.1016/S0963-8695(97)00021-2

    Article  Google Scholar 

  35. Zauner G, Mayr G, Hendorfer G Wavelet-based subsurface defect characterization in pulsed phase thermography for non-destructive evaluation. In: IS&T/SPIE Electronic Imaging, 2009. International Society for Optics and Photonics, pp 72480D-72480D-72488

  36. Hongjin Wang S-JH, Peng Bo, Xunfei Zhou (2017) Restored Pseudo Heat Flux (RPHF) Algorithm for Carbon Fiber Composite Defect Detection Using Thermography under Uneven Heating. Quantitative InfraRed Thermography Journal. https://doi.org/10.1080/17686733.2017.1417807

  37. ASTM (2014) Standard test methods for measuring and compensating for emissivity using infrared imaging radiometers. ASTM International, West Conshohocken (2014). doi, vol ASTM E1933-14

  38. Thissen, U., Van Brakel, R., De Weijer, A., Melssen, W., Buydens, L.: Using support vector machines for time series prediction. Chemometrics and intelligent laboratory systems 69(1), 35–49 (2003). https://doi.org/10.1016/S0169-7439(03)00111-4

    Article  Google Scholar 

  39. Al-Balushi, K., Samanta, B.: Gear fault diagnosis using energy-based features of acoustic emission signals. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 216(3), 249–263 (2002)

    Google Scholar 

  40. Mohandes, M., Halawani, T., Rehman, S., Hussain, A.A.: Support vector machines for wind speed prediction. Renewable Energy 29(6), 939–947 (2004). https://doi.org/10.1016/j.renene.2003.11.009

    Article  Google Scholar 

  41. Huang, C.-L., Chen, M.-C., Wang, C.-J.: Credit scoring with a data mining approach based on support vector machines. Expert Syst. Appl. 33(4), 847–856 (2007). https://doi.org/10.1016/j.eswa.2006.07.007

    Article  Google Scholar 

  42. Acharya, U.R., Ng, E., Tan, J.-H., Sree, S.V.: Thermography based breast cancer detection using texture features and support vector machine. J. Med. Syst. 36(3), 1503–1510 (2012). https://doi.org/10.1007/s10916-010-9611-z

    Article  Google Scholar 

Download references

Funding

Funding was provided by Texas A and M - CONACyT Program (Grant No. 230308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Jen Hsieh.

Appendices

Appendix 1: Derivation of RPHF and Dimensional Analysis

See Figs. 8 and 9.

Fig. 8
figure 8

Coating thickness of the training samples

Fig. 9
figure 9

Coating thickness of testing samples

To provide background about the underlying theory in this paper, the derivation of RPHF is shown below. First, by applying Fourier transform with respect to t, r, and θ respectively, Eqs. (15) can be transformed into frequency domain as :

$$ \frac{{{\text{i}\upomega}}}{{{{\upalpha }}_{1} }}v_{1} + {\xi^{2}} v_{1} = \frac{{\partial^{2} v_{1} }}{{\partial z^{2} }}, $$
(12)
$$ \frac{{{\text{i}\upomega}}}{{{{\upalpha }}_{1} }}v_{2} + {\xi^{2}} v_{2} = \frac{{\partial^{2} v_{2} }}{{\partial z^{2} }}. $$
(13)

With boundary conditions set as:

$$\begin{aligned} & - k_{1} \frac{{\partial v_{1} }}{\partial z}\left( {z = z_{0} } \right) \\ &\quad = \bar{q}\left( {\omega ,\xi } \right) = A sinc\left( {\frac{\omega }{{\omega_{0} }}} \right)\exp \left( { - \frac{{{\xi^{2}} B^{2} }}{8}} \right)/4\pi R^{2} ,\end{aligned} $$
(14)
$$ v_{1} \left( 0 \right) = v_{2} \left( 0 \right), $$
(15)
$$ k_{1} \frac{{\partial v_{1} }}{\partial z}\left( 0 \right) = k_{2} \frac{{\partial v_{2} }}{\partial z}\left( 0 \right), $$
(16)
$$ k_{2} \frac{{\partial v_{2} }}{\partial z}\left( { - \infty } \right) = 0. $$
(17)

Equations (12) and (13) are solved using:

$$ v_{1} = A\exp \left( { - z\sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega }}}{{\alpha_{1} }}} } \right) + B\exp \left( {z\sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega }}}{{\alpha_{1} }}} } \right), $$
(18)
$$ v_{2} = B_{2} \exp \left( { - z\sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega }}}{{\alpha_{1} }}} } \right) + A_{2} \exp \left( {z\sqrt {{\xi^{2}} + \frac{{{\text{i }\upomega}}}{{\alpha_{1} }}} } \right), $$
(19)

According to (17):

$$ B_{2} = 0. $$
(20)

By adding (18) (19) and (20) to Eqs. (14) (15) and (16), the following equations are obtained:

$$ A\exp \left( { - d_{0} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right) - B\exp \left( {d_{0} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right) = \frac{{\bar{q}\left( {\omega ,\xi } \right)}}{{k\sqrt {{\xi^{2}} + \frac{i\omega }{{\alpha_{1} }}} }}, $$
(21)
$$ A + B = A_{2} , $$
(22)
$$ \left( {B - A} \right) = \frac{{k_{2} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{2} }}} }}{{k_{1 } \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} }} A_{2} , $$
(23)

When Eq. (22) is added to Eq. (23), A and B are expressed as:

$$ B = \left( {1 + \frac{{k_{2} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{2} }}} }}{{k_{1 } \sqrt {{\xi^{2}} + \frac{i\omega }{{\alpha_{1} }}} }}} \right)A_{2}\bigg/2. $$
(24)
$$ A = \left( {1 - \frac{{k_{2} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{2} }}} }}{{k_{1 } \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} }}} \right)A_{2} \bigg/2. $$
(25)

Define \( R\left( {\xi ,{\text{i}}}\omega \right) \) as the ratio between A and B:

$$ R(\xi) = \frac{A}{B} = \frac{{\sqrt {{{\xi^{2}}} + \frac{{{\text{i}\upomega }}}{{\alpha_{1} }}} - \chi \sqrt {{{\xi^{2}}} + n^{2} \frac{{{\text{i}\upomega }}}{{\alpha_{1} }}} }}{{\sqrt{{{\xi^{2}}} + \frac{{{\text{i}\upomega }}}{{\alpha_{1} }}} + \chi \sqrt{{{\xi^{2}}} + {n^{2}} \frac{{{\text{i}\upomega }}}{{\alpha_{1} }}} }}, $$
(26)

where \( \chi = \frac{{k_{2} }}{{k_{1} }} \) and \( n = \sqrt {\frac{{\alpha_{1} }}{{\alpha_{2} }}} . \)

Add Eqs. (25) (24) and (26) to Eq. (21):

$$ A\left( {1/R - \exp \left( { - 2z_{0} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right)} \right) = \frac{{\bar{q}\left( {\omega ,\xi } \right)\exp \left( { - d_{0} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right)}}{{k\sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} }}, $$
(27)
$$ A = \frac{{\bar{q}\left( {\omega ,\xi } \right){\text{Rexp}}\left( { - d_{0} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right)}}{{k\sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} \left( {1 - R\exp \left( { - 2d_{0} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right)} \right)}}, $$
(28)
$$ B = \frac{{\bar{q}\left( {{{\upomega }},\xi } \right)\exp \left( { - d_{0} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right)}}{{k\sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} \left( {1 - R\exp \left( { - 2d_{0} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right)} \right)}}, $$
(29)
$$\begin{aligned} v_{1} & = \frac{{\bar{q}\left( {\omega ,\xi } \right){\text{Rexp}}\left( { - \left( {z + d_{0} } \right)\sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right)}}{{k\sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} \left( {1 - R\exp \left( { - 2d_{0} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right)} \right)}} \\ &\quad + \frac{{\bar{q}\left( {{{\upomega }},\xi } \right)\exp \left( {\left( {z - d_{0} } \right)\sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right)}}{{k\sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} \left( {1 - R\exp \left( { - 2d_{0} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right)} \right)}}. \end{aligned} $$
(30)

At the surface of coating z = − d0, one can obtained:

$$ v_{1} = \frac{{\bar{q}\left( {\omega ,\xi } \right)\left( {1 + {\text{Rexp}}\left( { - 2d_{0} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right) } \right)}}{{k\sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} \left( {1 - R\exp \left( { - 2d_{0} \sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}}}{{\alpha_{1} }}} } \right)} \right)}}, $$
(31)

A dimensional analysis should be applied to Eq. (31) in order to test whether the derivation is consistent with previous studies. The unit of v1 can be calculated from Eq. (31) by knowing that

$$ \bar{q}\left( {\omega ,\xi } \right)\sim \left[ {\frac{\text{J}}{{{\text{m}}^{2} {\text{s}}}}} \right], $$
$$ k\sim \left[ {\frac{J}{m \cdot K \cdot s}} \right], $$
$$ {{\upxi }}\sim {\text{m}}^{ - 1} , $$
$$ {{\upomega }}\sim {\text{s}}^{ - 1} , $$
$$ {{\upalpha }}\sim \frac{{{\text{m}}^{2} }}{\text{s}} . $$

The dimension of the term R, \( \sqrt {{\xi^{2}} + \frac{i\omega }{\alpha }} \) can be derived:

$$ {\text{R}}\sim \frac{{\sqrt {\left[ {{\text{m}}^{ - 1} } \right]^{2} + \frac{{\left[ {{\text{s}}^{ - 1} } \right]}}{{\left[ {\frac{{{\text{m}}^{2} }}{\text{s}}} \right]}}} - \left[ 1 \right]\sqrt {\left[ {{\text{m}}^{ - 1} } \right]^{2} + \left[ 1 \right]\frac{{\left[ {{\text{s}}^{ - 1} } \right]}}{{\left[ {\frac{{{\text{m}}^{2} }}{\text{s}}} \right]}}} }}{{\sqrt {\left[ {{\text{m}}^{ - 1} } \right]^{2} + \frac{{\left[ {{\text{s}}^{ - 1} } \right]}}{{\left[ {\frac{{{\text{m}}^{2} }}{\text{s}}} \right]}}} + \left[ 1 \right]\sqrt {\left[ {{\text{m}}^{ - 1} } \right]^{2} + \left[ 1 \right]\frac{{\left[ {{\text{s}}^{ - 1} } \right]}}{{\left[ {\frac{{{\text{m}}^{2} }}{\text{s}}} \right]}}} }}\sim \left[ 1 \right] $$
$$ \sqrt {{\xi^{2}} + \frac{i\omega }{\alpha }} \sim \sqrt {\left[ {{\text{m}}^{ - 1} } \right]^{2} + \left[ 1 \right]\frac{{\left[ {{\text{s}}^{ - 1} } \right]}}{{\left[ {\frac{{{\text{m}}^{2} }}{\text{s}}} \right]}}} \sim \left[ {m^{ - 1} } \right] $$

The dimension of v1 should be

$$ v_{1} \sim \frac{{\left[ {\frac{\text{J}}{{{\text{m}}^{2} {\text{s}}}}} \right]}}{{\left[ {\frac{J}{m \cdot K \cdot s}} \right] \cdot \left[ {m^{ - 1} } \right]}} \cdot \frac{{\left( {1 + \left[ 1 \right]\exp \left( {\left[ m \right] \cdot \left[ {{\text{m}}^{ - 1} } \right]} \right)} \right)}}{{\left( {1 - \left[ 1 \right]\exp \left( {\left[ m \right] \cdot \left[ {{\text{m}}^{ - 1} } \right]} \right)} \right)}} \sim \left[ K \right] $$

Besides, as the thermal effusivity is defined as \( e = \sqrt {\rho ck} \) while thermal diffusivity is defined as \( \alpha = \frac{k}{\rho c}, \) the Eq. (31) can be rewritten as:

$$ v_{1} = \frac{{\bar{q}\left( {\omega ,\xi } \right)\left( {1 + {\text{Rexp}}\left( { - \frac{{2z_{0} }}{{k_{1 } }}\sqrt {k_{1}^{2} {\xi^{2}} + {\text{i}\upomega}e_{1}^{2} } } \right) } \right)}}{{\sqrt {k_{1} {\xi^{2}} + {\text{i}\upomega}e_{1}^{2} } \left( {1 - R\exp \left( { - \frac{{2z_{0} }}{{k_{1} }}\sqrt {{\xi^{2}} + {\text{i}\upomega}e_{1}^{2} } } \right)} \right)}} , $$

with R defined as:

$$ R = \frac{{\sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}e_{1}^{2} }}{{k_{1}^{2} }}} - \chi \sqrt {{\xi^{2}} + n^{{{\prime }2}} \frac{{{\text{i}\upomega}e_{1}^{2} }}{{k_{1}^{2} }}} }}{{\sqrt {{\xi^{2}} + \frac{{{\text{i}\upomega}e_{1}^{2} }}{{k_{1}^{2} }}} + \chi \sqrt {{\xi^{2}} + n^{{{\prime }2}} \frac{{{\text{i}\upomega}e_{1}^{2} }}{{k_{1}^{2} }}} }}. $$
$$ n^{{\prime }} = \frac{{e_{2} }}{{e_{1} }} \cdot \frac{{k_{1} }}{{k_{2} }}. $$

Appendix 2: Measured Thickness for Each Sample

The coating thickness δc is determined from measured sample thickness δs and foil thickness δf as

$$ \delta_{c} = \delta_{s} - \delta_{f} $$
(32)

Therefore, the standard deviation of coating thickness δc as

$$ Std_{c} = \sqrt {Std_{s}^{2} + Std_{f}^{2} } $$
(33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Hsieh, SJ. Solving the Inverse Heat Conduction Problem in Using Long Square Pulse Thermography to Estimate Coating Thickness by Using SVR Models Based on Restored Pseudo Heat Flux (RPHF) In-Plane Profile. J Nondestruct Eval 37, 78 (2018). https://doi.org/10.1007/s10921-018-0535-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0535-8

Keywords

Navigation