Skip to main content
Log in

Non-destructive Flaw Mapping of Steel Surfaces by the Continuous Magnetic Barkhausen Noise Method: Detection of Plastic Deformation

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This paper reports the use of a non-destructive scanning technique to identify plastic deformation defects generated in steel. The technique is based on measurement of continuous magnetic Barkhausen noise (CMBN). In the experiments described here, surfaces with plastic deformations produced by crushing stresses in a 1070 steel are scanned, and the influence of probe configuration, coil type, scanner speed, applied magnetic field and the frequency band used for the analysis on the effectiveness of the technique is studied. A moving smoothing window based on a second order statistical moment is used to analyze the time signal. The results show that the method can detect the position of plastic deformation defects and distinguish between their amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Augustyniak, M., Augustyniak, B., Piotrowski, L., Chmielewski, M.: Determination of magnetisation conditions in a double-core Barkhausen noise neasurement set-up. J. Nondestruct. Eval. 34, 16 (2015)

    Article  Google Scholar 

  2. Vourna, P., Ktena, A., Tsakiridis, P.E., Hristoforou, E.: A novel approach of accurately evaluating residual stress and microstructure of welded electrical steels. NDT&E Int. 71, 33–42 (2015)

    Article  Google Scholar 

  3. Stupakov, O., Melikhov, Y.: Influence of magnetizing and filtering frequencieson Barkhausen noise response. IEEE Trans. Magn. 50, 4 (2014)

    Article  Google Scholar 

  4. Barkhausen, H.: Zwei mit hilfe der neuen verstarker entdeckte erscheinugen. Physik Z 20, 401–3 (1919)

    Google Scholar 

  5. Jiles, D.C.: Dynamics of domain magnetization and the Barkhausen effect. Czech J. Phys. 50, 893–988 (2000)

    Article  Google Scholar 

  6. Pal’a, J., Bydzovsky, J.: Barkhausen noise as a function of grain size in non-oriented FeSi steel. Measurement 46, 866–870 (2013)

    Article  Google Scholar 

  7. Anglada-Rivera, J., Padovese, L.R., Capo-Sanchez, J.: Magnetic Barkhausen Noise and hysteresis loopin commercial carbon steel: influence of applied tensile stress and grain size. J. Magn. Magn. Mater. 231, 299–306 (2001)

    Article  Google Scholar 

  8. Ranjan, J., Jiles, D.C.: Magnetic properties of decarburized steels: an investigation of the effects of grain size and carbon content. IEEE Trans. Magn. 23, 1869–1876 (1987)

    Article  Google Scholar 

  9. Saquet, O., Chicois, J., Vincent, A.: Barkhausen noise from plain carbon steels: analysis of the influence of microstructure. Mater. Sci. Eng. A 269, 73–82 (1999)

    Article  Google Scholar 

  10. Mandache, C., Krause, T.W., Clapham, L.: Investigation of optimum field amplitude for stress dependence of magnetic barkhausen noise. IEEE Trans. Magn. 43, 3976–3983 (2007)

    Article  Google Scholar 

  11. Ding, Song, Tian, GuiYun, Dobmann, Gerd, Wang, Ping: Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination. J. Magn. Magn. Mater. 421, 225–229 (2017)

    Article  Google Scholar 

  12. Franco, F.A., González, M.F.R., Campos, M.F., Padovese, L.R.: Relation between magnetic Barkhausen noise and hardness for Jominy quench tests in SAE 4140 and 6150 steels. J. Nondestruct. Eval. 32, 93–103 (2013)

    Article  Google Scholar 

  13. Kleber, X., Vincent, A.: On the role of residual internal stresses and dislocations on Barkhausen noise in plastically deformed steel. NDT&E Int. 37, 439–445 (2004)

    Article  Google Scholar 

  14. Dhar, A., Clapham, L., Atherton, D.L.: Influence of uniaxial plastic deformation on magnetic Barkhausen noise in steel. NDT&E Int. 34, 507–514 (2001)

    Article  Google Scholar 

  15. Crouch, A.E., Beuker, T.: In-line stress measurement by the continuous Barkhausen method. In: Proceedings of IPC 2004, International Pipeline Conference Calgary, Alberta, Canada (2004)

  16. Crouch, A.E., Burkhardt, G.L.: System and Method for In-Line Stress Measurement by Continuous Barkhausen method. United States patent US 7,038,444 B2 (2006)

  17. Franco, F.A., Padovese, L.R.: NDT flaw mapping of steel surfaces by continuous magnetic Barkhausen noise: volumetric flaw detection case. NDT&E Int. 42, 721–728 (2009)

    Article  Google Scholar 

  18. Caldas-Morgan, M., Padovese, L.R.: Fast detection of the magnetic easy axis on steel sheet using the continuous rotational Barkhausen method. NDT&E Int. 45, 148–155 (2012)

    Article  Google Scholar 

  19. Tumanski, S.: Induction coil sensors—a review. Meas. Sci. Technol. 18, R31–R46 (2007)

    Article  Google Scholar 

  20. Capó Sánchez, J., Padovese, L.: Magnetic Barkhausen noise measurement by resonant coil method. J. Magn. Magn. Mater. 321, L57–L62 (2009)

    Article  Google Scholar 

  21. Vashista, M., Moorthy, V.: Influence of applied magnetic field strength and frequency response of pick-up coil on the magnetic barkhausen noise profile. J. Magn. Magn. Mater. 345, 208–214 (2013)

    Article  Google Scholar 

  22. Morthy, V.: Important factors influencing the magnetic Barkhausen noise profile. IEEE Trans. Magn. 52(4), 1–3 (2016)

    Article  Google Scholar 

  23. Budynas, R.G., Nisbett, J.K., Shigley, J.E.: Shigley’s Mechanical Engineering Design, 9th edn. McGraw-Hill, New York (2011)

    Google Scholar 

  24. Dumas, G., Baronet, N.: Elastoplastic indentation of a half-space by an infinitely long rigid circular cylinder. Int. J. Mech. Sci. 13, 519–530 (1971)

    Article  Google Scholar 

  25. Gao, Y.F., Bower, A.F., Kim, K.-S., Lev, L., Cheng, Y.T.: The behavior of an elastic-perfectly plastic sinusoidal surface under contact loading. Wear 261, 145–154 (2006)

    Article  Google Scholar 

  26. Bryant, M.J., Evans, H.P., Snidle, R.W.: Plastic deformation in rough surface line contacts—a finite element study. Tribol. Int. 46, 269–278 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the State of São Paulo Research Foundation FAPESP (Ref. No. 05/57146-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddy Armando Franco Grijalba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grijalba, F.A.F., Padovese, L.R. Non-destructive Flaw Mapping of Steel Surfaces by the Continuous Magnetic Barkhausen Noise Method: Detection of Plastic Deformation. J Nondestruct Eval 37, 26 (2018). https://doi.org/10.1007/s10921-018-0480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0480-6

Keywords

Navigation