Skip to main content
Log in

Determination of Moisture Content in Ceramic Brick Walls Using Ground Penetration Radar

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The moisture content in ceramic masonry plays an important role in their performance and durability, also serviceability is severely affected by moisture. The presence of moisture represents one of the major issues associated with structures fabricated with ceramic masonry. The intrinsic characteristic of the material along with the age of the structure plays an important role in the amount of moisture absorbed by the walls. Traditional methods for determining the moisture content of in-situ masonry walls are many times destructive or semi-destructive and provide limited information. In this study, ground penetrating radar is used as a non-destructive technique for measuring the moisture content in ceramic masonry walls. Control samples were used as calibration in the laboratory and field measurements were performed to determine the moisture content of the ceramic walls. The developed methodology was applied to real size ceramic walls, were in-situ measurements showed areas with different moisture levels. The methodology developed showed to be fast and easy to use in the field for measuring the moisture content of ceramic brick walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mas-Guindal, A.J.: La concepción estructural de la fábrica en la arquitectura. Inf. Constr. 56(496), 109–124 (2005)

    Google Scholar 

  2. RILEM TC 177-MDT 2005. MD.E.1: Determination of moisture distribution and level using radar in masonry built with regular units. Mater. Struct. 38, 283–288 (2005)

  3. Binda, L., Colla, C., Forde, M.C.: Identification of moisture capillarity in masonry using digital impulse radar. Constr. Build. Mater. 8(2), 101–107 (1994)

    Article  Google Scholar 

  4. Moriconi, M., Castellano, M.G., Collepardi, M.: Mortar deterioration of the masonry walls in historic buildings. A case history: Vanvitelli’s Mole in Ancona. Mater. Struct. 27(7), 408–414 (1994)

    Article  Google Scholar 

  5. Gea, S., Quinteros, R., Nallim, L.: Control del proceso de deshumidificación de muros con georradar. Un edificio patrimonial como caso de studio. In: Proceedings of International Symposium on XII Congreso latinoamericano de Patología (ConPat 2013), Cartagena de Indias, Colombia, 30 September–4 October 2013, Colombia

  6. Tosti, F., Slob, E.: Determination, by using GPR, of the volumetric water content in structures, substructures, foundations and soil. In: Benedetto, A., Pajewskki, L. (eds.) Civil Engineering Applications of Ground Penetrating Radar, pp. 163–194. Springer, Switzerland (2015)

    Google Scholar 

  7. Maierhofer, C.: Combination of non-destructive testing methods for the assessment of masonry structures. In: Proceedings of International RILEM Symposium on Site Assessment of Concrete, Masonry and Timber Structures (SACoMaTiS 2008), Varenna, Italy, 1–2 September 2008. RILEM Publications SARL, France (2008)

  8. Maierhofer, C., Leipold, S.: Radar investigation of masonry structures. NDT & E Int. 34(2), 139–147 (2001)

    Article  Google Scholar 

  9. Binda L, Maierhofer C.: Strategies for the assessment of historic masonry structures. In: Proceedings of International Symposium on RILEM/NSF International Engineering Research and Education Workshop ‘In-situ Evaluation of Masonry and Wood Historic Structures: Challenges and Opportunities’, Prague, Czech Republic, 10–14 July 2006. RILEM Publications SARL, France (2009)

  10. Bungey, J.H., Millard, S.G., Grantham, M.G.: Testing of Concrete in Structures, 4th edn. Taylor & Francis, Boca Raton, FL (2006)

    Google Scholar 

  11. Malhotra, V.M., Carino, N.J.: Handbook on Nondestructive Testing of Concrete, 2nd edn. CRC Press, Boca Raton, FL (2004)

    Google Scholar 

  12. Angeliki, A., Fokaides, P.A., Christou, P., Kalogirou, S.A.: Infrared thermography (IRT) applications for building diagnostics: a review. Appl. Energy 134, 531–549 (2014)

    Article  Google Scholar 

  13. Colla, C., McCann, D.M., Forde, M.C.: Radar testing of a masonry composite structure with sand and water backfill. J. Bridge Eng. 6(4), 262–270 (2001)

    Article  Google Scholar 

  14. Binda, L., Lenzi, G., Saisi, A.: NDE of masonry structures: use of radar test for the characterisation of stone masonries. In: Proceedings of the Seventh International Conference on Structural Faults and Repair (1997)

  15. Shuller, M.P.: Nondestructive testing and damage assessment of masonry structures. In: Proceedings of International Symposium on RILEM/NSF International Engineering Research and Education Workshop ‘In-situ Evaluation of Masonry and Wood Historic Structures: Challenges and Opportunities’, Prague, Czech Republic, 10–14 July 2006. RILEM Publications SARL, France (2009)

  16. Valle, S., Zanzi, L., Rocca, F.: Radar tomography for NDT: comparison of techniques. J. Appl. Geophys. 41(2,3), 259–269 (1999)

    Article  Google Scholar 

  17. Saisi, A., Valle, S., Zanzi, L., Binda, L.: Radar and sonic as complementary and/or alternative tests in the survey of structures. In: Proceedings of the International Millennium Congress, Archi (2000)

  18. Schuller, M.P.: Non-destructive testing and damage assessment of masonry structures. Prog. Struct. Eng. Mater. 5(4), 239–251 (2003)

    Article  Google Scholar 

  19. Maierhofer, Ch., Wöstmann, J.: Investigation of dielectric properties of brick materials as a function of moisture and salt content using a microwave impulse technique at very high frequencies. NDT & E Int. 31(4), 259–263 (1998)

    Article  Google Scholar 

  20. Binda, L., Saisi, A., Tiraboschi, C., Valle, S., Colla, C., Forde, M.: Application of sonic and radar tests on the piers and walls of the Cathedral of Noto. Constr. Build. Mater. 17(8), 613–627 (2003)

    Article  Google Scholar 

  21. Diamanti, N., Giannopoulos, A., Forde, M.: Numerical modelling and experimental verification of GPR to investigate ring separation in brick masonry arch bridges. NDT & E Int. 41, 354–363 (2008)

    Article  Google Scholar 

  22. Binda, L., Lualdi, M., Saisi, A., Zanzi, L.: The complementary use of on site non-destructive tests for the investigation of historic masonry structures. In: Proceedings of the Ninth North American Masonry Conference (2003)

  23. Lai, W.L., Kind, T., Wiggenhauser, H.: Using ground penetrating radar and time-frequency analysis to characterize construction materials. NDT & E Int. 44, 111–120 (2011)

    Article  Google Scholar 

  24. Annan, A.P.: Electromagnetic principles of ground penetrating radar (chapter 1). In: Jol, H.M. (ed.) Ground Penetrating Radar: Theory and Applications, pp. 3–40. Elsevier Science, Oxford (2009)

    Google Scholar 

  25. Davis, J.L., Annan, A.P.: Ground penetrating radar to measure soil water content. In: Dane, J.H., Topp, G.C., (eds.): Methods of Soil Analysis, Part 4: Physical Method, pp. 446–463. Soil Science Society of America, Fitchburg, WI. Elsevier Science, Oxford (2002)

  26. Laurens, S., Balayssac, J.P., Rhazi, J., Klysz, G., Arliguie, G.: Non-destructive evaluation of concrete moisture by GPR: experimental study and direct modeling. Mater. Struct. 38, 827–832 (2005)

    Article  Google Scholar 

  27. De Loor, G.P.: The dielectric properties of wet materials. IEEE Trans. Geosci. Remote Sens. 21(3), 364–369 (1983)

    Article  Google Scholar 

  28. Barnes, C.L., Trottier, J.F., Forgeron, D.: Improved concrete bridge deck evaluation using GPR by accounting for signal depth-amplitude effects. NDT & E Int. 41, 427–433 (2008)

    Article  Google Scholar 

  29. Gallagher, G.P., Leiper, Q., Williamson, R., Clark, M.R., Forde, M.C.: The application of time domain ground penetrating radar to evaluate rail way track ballast. NDT & E Int. 32, 463–468 (1999)

    Article  Google Scholar 

  30. Lai, W., Kind, T., Kruschwitz, S., Wöstmann, J., Wiggenhauser, H.: Spectral absorption of spatial and temporal ground penetrating radar signals by water in construction materials. NDT & E Int. 67, 55–63 (2014)

    Article  Google Scholar 

  31. Cetrangolo, G.P., Moltini, G., Domenech, L.D., Fiori, L., Aulet, A.B., Morquio, A.A.: Cuantificación del Contenido de Humedad en Ladrillos Utilizando Radar Penetrante de Tierra. In: Proceedings of International Symposium on XIII Congreso latinoamericano de Patología (ConPat 2015), 8–10 September, Lisboa, Portugal

  32. Vereecken, E., Roels, S.: Hygric performance of a massive masonry wall: How do the mortar joints influence the moisture flux? Constr. Build. Mater. 41, 697–707 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are most grateful to Dr. Alina Aulet and Lucia Fiori, for their assistance in the experimental face of the study and to the Comisión Sectorial de Investigación Científica de la Universidad de la República, for the support in the Project I+D 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Cetrangolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetrangolo, G.P., Domenech, L.D., Moltini, G. et al. Determination of Moisture Content in Ceramic Brick Walls Using Ground Penetration Radar. J Nondestruct Eval 36, 12 (2017). https://doi.org/10.1007/s10921-016-0390-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-016-0390-4

Keywords

Navigation