Skip to main content
Log in

Effect of Spectral Reshaping on Frequency Modulated Thermal Wave Imaging for Non-destructive Testing and Evaluation of Steel Material

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Infrared thermographic techniques show their potential usage for non-destructive testing and evaluation of various materials due to their inherent capabilities such as whole field, non-contact, qualitative and quantitative to detect surface and sub-surface anomalies. This contribution introduces a novel data analysis scheme by spectral reshaping of linear frequency modulated temperature profile captured over a mild steel specimen. Time and frequency domain based processing methods are adopted on the generated temporal thermal data to reveal the hidden defects. Obtained results show the potential capabilities of spectral reshaping based on Gaussian windowed chirp with enhanced resolution and sensitivity for sub-surface defect detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maldague, X.P.V.: Theory and Practice of Infrared Technology for Non Destructive Testing. Wiley, New York (2001)

    Google Scholar 

  2. Djupkep, F.B.D., Maldague, X., Bendada, A., Bison, P.: Analysis of a new method of measurement and visualization of indoor conditions by infrared thermography. Rev. Sci. Instrum. 84(7), 084906 (2013)

    Article  Google Scholar 

  3. Grinzato, E., Vavilov, V., Bison, P.G., Marinetti, S.: Hidden corrosion detection in thick metallic components by transient IR thermography. Infrared Phys. Technol. 49(3 SPEC. ISS.), 234–238 (2007)

    Article  Google Scholar 

  4. Bison, P., Ceseri, M., Fasino, D., Inglese, G.: Domain derivative approach to active infrared thermography. Inverse Prob. Sci. Eng. 18(7), 873–889 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ringermacher, H.I., Howard, D.R., Filkins, R.J.: Flash-quenching for high resolution thermal depth imaging. Proc. AIP 700(1), 477–481 (2004)

    Article  Google Scholar 

  6. Omar, M.A., Zhou, Y.: A quantitative review of three flash thermography processing routines. Infrared Phys. Technol. 51(4), 300–306 (2008)

    Article  Google Scholar 

  7. Balageas, D.L.: Defense and illustration of time-resolved pulsed thermography for NDE. Quant. InfraRed Thermogr. J. 9(1), 3–32 (2012)

    Article  Google Scholar 

  8. Shepard, S.M.: Advances in pulsed thermography. In: Proceedings of SPIE - The International Society for Optical Engineering 4360, 511–515 (2001)

  9. Busse, G., Eyerer, P.: Thermal wave remote and non destructive inspection of polymers. Appl. Phys. Lett. 43(4), 355–357 (1983)

    Article  Google Scholar 

  10. Busse, G., Wu, D., Karpen, W.: Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 71(7), 3962–3965 (1992)

    Article  Google Scholar 

  11. Busse, G.: Nondestructive evaluation of polymer materials. NDT&E Int. 27(5), 253–262 (1994)

    Article  Google Scholar 

  12. Maldague, X.P.V.: Introduction to NDT by active infrared thermography. Mater. Eval. 60(8), 1060–1073 (2002)

    Google Scholar 

  13. MaIdague, X., Largouët, Y., Couturier, J.P.: A study of defect depth using neural networks in pulsed phase thermography: modeling, noise, experiments. Rev. Gen. Therm. 37(7), 704–717 (1998)

    Article  Google Scholar 

  14. Maldague, X., Galmiche, F., Ziadi, A.: Advances in pulse phase thermography. Infrared Phys. Technol. 43(3–5), 175–181 (2002)

    Article  Google Scholar 

  15. Vavilov, V.P., Marinetti, S.: Pulsed phase thermography and Fourier-analysis thermal tomography. Russ. J. Nondestr. Test. 35(2), 134–145 (1999)

    Google Scholar 

  16. Avdelidis, N.P., Ibarra-Castanedo, C., Maldague, X., Marioli-Riga, Z.P., Almond, D.P.: A thermographic comparison study for the assessment of composite patches. Infrared Phys. Technol. 45(4), 291–299 (2004)

    Article  Google Scholar 

  17. Ibarra-Castanedo, C., González, D., Klein, M., Pilla, M., Vallerand, S., Maldague, X.: Infrared image processing and data analysis. Infrared Phys. Technol. 46(1–2 SPEC. ISS.), 75–83 (2004)

    Article  Google Scholar 

  18. Maldague, X., Marinetti, S.: Pulsed phase thermography. J. Appl. Phys. 79, 2694–2698 (1996)

    Article  Google Scholar 

  19. Ghali, V.S., Jonnalagadda, N., Mulaveesala, R.: Three-dimensional pulse compression for infrared nondestructive testing. IEEE Sens. J. 9(7), 832–833 (2009)

    Article  Google Scholar 

  20. Mulaveesala, R., Vaddi, J.S., Singh, P.: Pulse compression approach to infrared nondestructive characterization. Rev. Sci. Instrum. 79(8), 094901 (2008)

    Article  Google Scholar 

  21. Mulaveesala, R., Ghali, V.S.: Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics. Rev. Sci. Instrum. 82(5), 054902 (2011)

    Article  Google Scholar 

  22. Mulaveesala, R., Tuli, S.: Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection. Appl. Phys. Lett. 89(19), 191913 (2006)

    Article  Google Scholar 

  23. Mulaveesala, R., Pal, P., Tuli, S.: Interface study of bonded wafers by digitized linear frequency modulated thermal wave imaging. Sens. Actuators A 128(1), 209–216 (2006)

  24. Arora, V., Siddiqui, J.A., Mulaveesala, R., Muniyappa, A.: Pulse compression approach to nonstationary infrared thermal wave imaging for nondestructive testing of carbon fiber reinforced polymers. IEEE Sens. J. 15(2), 663–664 (2015). art. no. 6936841

  25. Dua, G., Mulaveesala, R.: Applications of Barker coded infrared imaging method for characterisation of glass fibre reinforced plastic materials. Electron. Lett. 49(16), 1071–1073 (2013)

    Article  Google Scholar 

  26. Liu, J., Gong, J., Liu, L., Qin, L., Wang, Y.: Investigation on stress distribution of multilayered composite structure (MCS) using infrared thermographic technique. Infrared Phys. Technol. 61, 134–143 (2013)

    Article  Google Scholar 

  27. Arora, V., Mulaveesala, R., Siddiqui, J.A., Muniyappa, A.: Hilbert transform-based pulse compression approach to infrared thermal wave imaging for sub-surface defect detection in steel material. Insight 56(9), 550–552 (2014)

    Article  Google Scholar 

  28. Junyan, L., Yang, L., Fei, W., Yang, W.: Study on probability of detection (POD) determination using lock-in thermography for nondestructive inspection (NDI) of CFRP composite materials. Infrared Phys. Technol. 71, 448–456 (2015)

    Article  Google Scholar 

  29. Borazjani, E., Spinello, D., Necsulescu, D.S.: Determination of the modulation frequency for thermographic non-destructive testing. NDT&E Int. 70(1), 1–8 (2015)

    Article  Google Scholar 

  30. Gong, J., Liu, J., Qin, L., Wang, Y.: Investigation of carbon fiber reinforced polymer (CFRP) sheet with subsurface defects inspection using thermal-wave radar imaging (TWRI) based on the multi-transform technique. NDT&E Int. 62, 130–136 (2014)

    Article  Google Scholar 

  31. Liu, J., Gong, J., Qin, L., Wang, H., Wang, Y.: Study of inspection on metal sheet with subsurface defects using linear frequency modulated ultrasound excitation thermal-wave imaging (LFM-UTWI). Infrared Phys. Technol. 62, 136–142 (2014)

    Article  Google Scholar 

  32. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  33. Siddiqui, J.A., Arora, V., Mulaveesala, R., Muniyappa, A.: Modelling of the frequency modulated thermal wave imaging process through the finite element method for non-destructive testing of a mild steel sample. Insight 57(5), 266–268 (2015)

    Article  Google Scholar 

  34. Siddiqui, J.A., Arora, V., Mulaveesala, R., Muniyappa, A.: Infrared thermal wave imaging for nondestructive testing of fibre reinforced polymers. Exp. Mech. 55(7), 1239–1245 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the support of the SERC, DST, Ministry of Science and Technology, Govt. of India through the research grant (SB/S3/EECE/089/2014 dated 02-06-2014), which transformed the development of thermal wave imaging method into a novel, promising non-destructive testing technique, suitable to characterization of materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravibabu Mulaveesala.

Additional information

This article is part of the Topical Collection on Thermography.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, V., Mulaveesala, R. & Bison, P. Effect of Spectral Reshaping on Frequency Modulated Thermal Wave Imaging for Non-destructive Testing and Evaluation of Steel Material. J Nondestruct Eval 35, 15 (2016). https://doi.org/10.1007/s10921-015-0333-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-015-0333-5

Keywords

Navigation