Skip to main content
Log in

Automatic Microstructural Characterization and Classification Using Higher-Order Spectra on Ultrasound Signals

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

During the gas tungsten arc welding of nickel based superalloys, the secondary phases such as Laves and carbides are formed in final stage of solidification. But, other phases such as \(\gamma {''}\) and \(\delta \) phases can precipitate in the microstructure, during aging at high temperatures. Nevertheless, choosing the appropriate conditions of welding can minimize the formation of the Nb-rich Laves phases and thus reduce the susceptibility to solidification cracking. This study aims at the automatic microstructurally characterizing the kinetics of phase transformations on an Nb-base alloy, thermally aged at 650 and 950 \(^{\circ }\)C for 10, 100 and 200 h, through backscattered ultrasound signals at frequency of 4 MHz. For this, an automated processing system was designed using the spectrum representation of higher order statistics. The ultrasound signals are inherently non-linear and thus the conventional linear time and frequency domain methods can not reveal the complexity of these signals clearly. Bispectrum (the spectral representation of third order correlation) is a non-linear method which is highly robust to noise. In the proposed system, the bispectrum coefficients are subjected to linear discriminant analysis (LDA) technique to reduce the statistical redundancy and reveal discriminating features. These dimensionality reduced features are fed to the classification and regression tree, random forest and k-nearest neighbor (k-NN) classifiers to automatic microstructural characterization. Bispectrum coupled with LDA and k-NN yielded the highest average accuracy of 95.0 and 78.0 %, respectively for thermal aging at 650 and 950 \(^{\circ }\)C. Thus, the proposed processing system provides high reliability to be used for microstructure characterization through ultrasound signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Boser, O.: The behavior of inconel 625 in a silver environment. Mater. Sci. Eng. 41(1), 59–64 (1979)

    Article  Google Scholar 

  2. Kohl, H., Peng, K.: Thermal stability of the superalloys Inconel 625 and Nimonic 86. J. Nucl. Mater. 101(3), 243–250 (1981)

    Article  Google Scholar 

  3. Thomas, C., Tait, P.: The performance of Alloy 625 in long-term intermediate temperature applications. Int. J. Press. Vessel. Pip. 59(1–3), 41–49 (1994)

    Article  Google Scholar 

  4. Cieslak, M.: The welding and solidification metallurgy of alloy 625. Weld. J. 70(2), 49–56 (1991)

    Google Scholar 

  5. Cieslak, M., Headley, T., Romig, A.: The welding metallurgy of HASTELLOY alloys C-4, C-22, and C-276. Metall. Trans. A 17(11), 2035–2047 (1986)

    Article  Google Scholar 

  6. Yang, J., Zheng, Q., Sun, X., Guan, H., Hu, Z.: Formation of \(\mu \) phase during thermal exposure and its effect on the properties of K465 superalloy. Scr. Mater. 55(4), 331–334 (2006)

    Article  Google Scholar 

  7. Dupont, J., Banovic, S., Marder, A.: Microstructural evolution and weldability of dissimilar welds between a super austenitic stainless steel and nickel-based alloys. Weld. J. 82(6), 125–156 (2003)

    Google Scholar 

  8. de Albuquerque, V., de Macedo Silva, E., Pereira Leite, J., de Moura, E., de Araújo Freitas, V., Tavares, J.: Spinodal decomposition mechanism study on the duplex stainless steel UNS S31803 using ultrasonic speed measurements. Mater. Des. 31(4), 2147–2150 (2010)

    Article  Google Scholar 

  9. de Albuquerque, V., Melo, T., de Oliveira, D., Gomes, R., Tavares, J.: Evaluation of grain refiners influence on the mechanical properties in a CuAlBe shape memory alloy by ultrasonic and mechanical tensile testing. Mater. Des. 31(7), 3275–3281 (2010)

    Article  Google Scholar 

  10. de Macedo Silva, E., de Albuquerque, V., Leite, J., Varela, A., Moura, E., Tavares, J.: Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing. Mater. Sci. Eng. A 516(1—-2), 126–130 (2009)

    Article  Google Scholar 

  11. de Araújo Freitas, V., Normando, P., de Albuquerque, V., de Macedo Silva, E., Silva, A., Tavares, J.: Nondestructive characterization and evaluation of embrittlement kinetics and elastic constants of duplex stainless steel SAF 2205 for different aging times at 425\(^{\circ }\)C and 475\(^{\circ }\)C. J. Nondestruct. Eval. 30(3), 130–136 (2011)

    Article  Google Scholar 

  12. Normando, P., Moura, E., Souza, J., Tavares, S., Padovese, L.: Ultrasound, eddy current and magnetic Barkhausen noise as tools for sigma phase detection on a UNS S31803 duplex stainless steel. Mater. Sci. Eng. A 527(12), 2886–2891 (2010)

    Article  Google Scholar 

  13. Vieira, A., de Moura, E., Gonçalves, L., Rebello, J.: Characterization of welding defects by fractal analysis of ultrasonic signals. Chaos Solitons Fractals 38(3), 748–754 (2008)

    Article  Google Scholar 

  14. de Moura, E., Normando, P., Gonçalves, L., Kruger, S.: Characterization of cast iron microstructure through fluctuation and fractal analyses of ultrasonic backscattered signals combined with classification techniques. J. Nondestruct. Eval. 31(1), 90–98 (2011)

    Article  Google Scholar 

  15. Vieira, A., de Moura, E., Gonçalves, L.: Fluctuation analyses for pattern classification in nondestructive materials inspection. EURASIP J. Adv. Signal Process. 2010(1), 262869 (2010)

    Article  Google Scholar 

  16. Freitas, V., Albuquerque, V., Silva, E., Silva, A., Tavares, J.: Nondestructive characterization of microstructures and determination of elastic properties in plain carbon steel using ultrasonic measurements. Mater. Sci. Eng. A 527(16–17), 4431–4437 (2010)

    Article  Google Scholar 

  17. de Albuquerque, V., Filho, P., Cavalcante, T., Tavares, J.: New computational solution to quantify synthetic material porosity from optical microscopic images. J. Microsc. 240(1), 50–59 (2010)

    Article  MathSciNet  Google Scholar 

  18. Albuquerque, V., Tavares, J., Cortez, P.: Quantification of the microstructures of hypoeutectic white cast iron using mathematical morphology and an artificial neural network. IJMMP 5(1), 52 (2010)

    Article  Google Scholar 

  19. de Albuquerque, V., de Alexandria, A., Cortez, P., Tavares, J.: Evaluation of multilayer perceptron and self-organizing map neural network topologies applied on microstructure segmentation from metallographic images. NDT & E Int. 42(7), 644–651 (2009)

    Article  Google Scholar 

  20. de Albuquerque, V., Cortez, P., de Alexandria, A., Tavares, J.: A new solution for automatic microstructures analysis from images based on a backpropagation artificial neural network. Nondestruct. Test. Eval. 23(4), 273–283 (2008)

    Article  Google Scholar 

  21. Papa, J., Nakamura, R., de Albuquerque, V., Falcão, A., Tavares, J.: Computer techniques towards the automatic characterization of graphite particles in metallographic images of industrial materials. Expert Syst. Appl. 40(2), 590–597 (2013)

    Article  Google Scholar 

  22. Nunes, T., de Albuquerque, V., Papa, J., Silva, C., Normando, P., Moura, E., Tavares, J.: Automatic microstructural characterization and classification using artificial intelligence techniques on ultrasound signals. Expert Syst. Appl. 40(8), 3096–3105 (2013)

    Article  Google Scholar 

  23. de Albuquerque, V., Silva, C., Normando, P., Moura, E., Tavares, J.: Thermal aging effects on the microstructure of Nb-bearing nickel based superalloy weld overlays using ultrasound techniques. Mater. Des. 36, 337–347 (2012)

  24. Shankar, V., Bhanu, K., Sankara, R., Mannan, S.: Microstructure and mechanical properties of Inconel 625 superalloy. J. Nucl. Mater. 288(2–3), 222–232 (2001)

    Article  Google Scholar 

  25. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  26. Nikias, C., Mendel, J.: Signal processing with higher-order spectra. IEEE Signal Process. Mag. 10(3), 10–37 (1993)

    Article  Google Scholar 

  27. Mendel, J.: Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proc. IEEE 79(3), 278–305 (1991)

    Article  Google Scholar 

  28. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  29. Bishop, C.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  30. Strobl, C., Malley, J., Tutz, G.: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol. Methods 14(4), 323–348 (2009)

  31. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, Boston (1990)

  32. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)

  33. Cox, D.: Principles of Statistical Inference. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  34. Freedman, D.: Statistical Models. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  35. Chen, J., Shi, Y., Shi, S.: Noise analysis of digital ultrasonic nondestructive evaluation system. Int. J. Press. Vessel. Pip. 76(9), 619–630 (1999)

    Article  Google Scholar 

  36. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  37. de Albuquerque, V., Barbosa, C., Silva, C., Moura, E., Filho, P., Papa, J., Tavares, J.: Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy. Sensors 15(6), 12474–12497 (2015)

    Article  Google Scholar 

  38. Vejdannik, M., Sadr, A.: Application of linear discriminant analysis to ultrasound signals for automatic microstructural characterization and classification. J. Signal Process. Syst. (2015). doi:10.1007/s11265-015-1029-x

Download references

Acknowledgments

The first author thanks from Victor Hugo C. de Albuquerque and is also grateful for his help for providing the experimental dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Vejdannik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vejdannik, M., Sadr, A. Automatic Microstructural Characterization and Classification Using Higher-Order Spectra on Ultrasound Signals. J Nondestruct Eval 35, 16 (2016). https://doi.org/10.1007/s10921-015-0332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-015-0332-6

Keywords

Navigation