Skip to main content
Log in

Nondestructive In-situ Permittivity Measurement of Liquid Within a Bottle Using an Open-Ended Microwave Waveguide

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This research demonstrates an effective in-situ testing approach to measure permittivity of liquid samples within a container using microwaves. An open-ended waveguide is employed as a sensor in the experiment. This apparatus is easy-to-use because it does not require special calibration and is not limited by sample shape or dimensions. After positioning the bottle inside the open-ended waveguide and adding a layer of surrounding medium that fills the space between waveguide and the bottle, the waveguide functions as a resonant cavity. By analyzing the \(S_{11}\) amplitude waveform over the frequency range from 250 to 550 MHz, the resonant frequencies can be obtained for a certain propagating mode. The measured values are found to match the theoretical ones extremely well; this result implies that the new establishment is highly precise and sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Izake, E.L.: Forensic and homeland security applications of modern portable Raman spectroscopy. Forensic Sci. Int. 202, 1–8 (2010). doi:10.1016/j.forsciint.2010.03.020

  2. Eliasson, C., Macleod, N.A., Matousek, P.: Noninvasive detection of concealed liquid explosives using Raman spectroscopy. Anal. Chem. 79, 8185–8189 (2007). doi:10.1021/ac071383n

    Article  Google Scholar 

  3. Efremov, E.V., Ariese, F., Gooijer, C.: achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential. Anal. Chim. Acta 606, 119–134 (2008). doi:10.1016/j.aca.2007.11.006

    Article  Google Scholar 

  4. Kaatze, U., Feldman, Y.: Broadband dielectric spectrometry of liquids and biosystems. Meas. Sci. Technol. 17, R17–35 (2006). doi:10.1088/0957-0233/17/2/R01

    Article  Google Scholar 

  5. Kaatze, U.: Perspectives in dielectric measurement techniques for liquids. Meas. Sci. Technol. 19, 112001 (2001). doi:10.1088/0957-0233/19/11/112001

    Article  Google Scholar 

  6. Skresanov, V.N., Eremenko, Z.E., Kuznetsova, E.S., et al.: Circular layered waveguide use for wideband complex permittivity measurement of lossy liquids. IEEE Trans. Instrum. Meas. 63, 694–701 (2014). doi:10.1109/TIM.2013.2282003

    Article  Google Scholar 

  7. Kouzai, M., Nishikata, A., Fukunaga, K., Miyaoka, S.: Complex permittivity measurement at millimetre-wave frequencies during the fermentation process of Japanese sake. J. Phys. D 40, 54–60 (2007). doi:10.1088/0022-3727/40/1/S09

    Article  Google Scholar 

  8. Skresanov, V.N., Eremenko, Z.E., Glamazdin, V.V., Shubnyi, A.I.: Improved differential Ka band dielectrometer based on the wave propagation in a quartz cylinder surrounded by high loss liquid under test. Meas. Sci. Technol. 22, 065403 (2011). doi:10.1088/0957-0233/22/6/065403

    Article  Google Scholar 

  9. Zahn, M., Ohki, Y., Fenneman, D.B., Gripshover, R.J.: Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design. Proc. IEEE 74, 1182–1221 (1986). doi:10.1109/PROC.1986.13611

    Article  Google Scholar 

  10. Faraji, M., Farajtabar, A., Gharib, F.: Determination of water-ethanol mixtures autoprotolysis constants and solvent effect. J. Appl. Chem. Res. 9, 7–12 (2009)

    Google Scholar 

  11. Pozar, D.M.: Microwave Engineering. Wiley, New Jersey (2005)

  12. Eremenko, Z.E., Shubnyi, A.I., Anikina, N.S., et al.: Complex permittivity measurement of high loss liquids and its application to wine analysis. In: Zhurbenko, V. (ed) Electromagnetic Waves, pp. 403-422. InTech (2011). doi: 10.5772/17748

  13. Korfhagen, J.J., Kandadai, M.A., Clark, J.F., et al.: A prototype device for non-invasive continuous monitoring of intracerebral hemorrhage. J. Neurosci. Methods 213, 132–137 (2013). doi:10.1016/j.jneumeth.2012.12.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Ju, Y. & Yang, L. Nondestructive In-situ Permittivity Measurement of Liquid Within a Bottle Using an Open-Ended Microwave Waveguide. J Nondestruct Eval 35, 7 (2016). https://doi.org/10.1007/s10921-015-0322-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-015-0322-8

Keywords

Navigation