Skip to main content
Log in

Fatigue Growth Analysis of Pre Induced Surface Defects Using Piezoelectric Wafer Based Impedance Method and Digital Image Correlation System

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Defects in real mechanical, industrial and aerospace structures frequently have complex shapes. Most real structures are typically prone to multiple fatigue cracks and their propagation can be monitored by observing changes in the structural stiffness resulting from strength reduction as a function of the number of loading cycles. In addition, strain variations on the structural surface can be captured using digital equipments. The present work monitors two specimens (AISI 4340 steel) with electrode sparked hemispherical defects on their surfaces. Multiple-cracks emanating from these defects, under fatigue cyclic loading were monitored using piezoelectric wafer based electromechanical impedance (EMI) technique, and digital image correlation (DIC) system. EMI technique uses signature comparison of healthy and damaged state of the structure to depict the occurrence of crack and its growth. Images of DIC system captures initial sightings of surface hair-line cracks from the corners of machined defects and their propagation till merging. Thus, a signature analysis based technique such as EMI and image processing technology such as DIC were found to complement each other to expedite the prediction of early crack and their appearance on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sevostianov, I., Zagrai, A., Kruse, W.A., Hardee, H.: Connection between strength reduction, electric resistance and electro-mechanical impedance in materials with fatigue damage. Int. J. Fract. 164, 159–166 (2010)

    Article  Google Scholar 

  2. Chermahini, R.G., Palmberg, B., Blom, A.F.: Fatigue crack growth and closure behaviour of semicircular and semi-elliptical surface flaws. Int. J. Fatigue 15(4), 259–263 (1993)

    Article  Google Scholar 

  3. Taylor, S.G., Park, G., Farinholt, K.M., Todd, M.D.: Diagnostics for piezoelectric transducers under cyclic loads deployed for structural health monitoring applications. Smart Mater. Struct. 22(2), 025024 (2013). doi:10.1088/0964-1726/22/2/025024

    Article  Google Scholar 

  4. Thomas, D., Welter, J., Giurgiutiu, V.: Corrosion damage detection with piezoelectric wafer active sensors, SPIE’s 11th Annual International Symposium on Smart Structures and Materials and 9th Annual International Symposium on NDE for Health Monitoring and Diagnostics, San Diego, CA, 14–18 March 2004, paper # 5394–2

  5. Liu, Y., Mohanty, S., Chattopadhyay, A.: Prediction of Fatigue Damage and Residual Useful Life for Composite Structures Using Passive Sensing, International Workshop on Structural Health Monitoring (IWSHM) Conference. Stanford University, Stanford (2009)

    Google Scholar 

  6. Giurgiutiu, V., Zagrai, A.N., Bao, J.J.: Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Int. J. Struct. Health Monitor. 1(1), 41–61 (2002)

    Article  Google Scholar 

  7. Liang, C., Sun, F.P., Rogers, C.A.: Coupled electro-mechanical analysis of adaptive material systems: determination of the actuator power consumption and system energy transfer. J. Intell. Mater. Syst. Struct. 5, 12–20 (1994)

    Article  Google Scholar 

  8. Zhou, S.W., Liang, C., Rogers, C.A.: An impedance-based system modelling approach for induced strain actuator-driven structures. J. Vibr. Acoust. 118, 323–331 (1996)

    Article  Google Scholar 

  9. Park, G., Sohn, H., Farrar, C.R., Inman, D.J.: Overview of piezoelectric impedance-based health monitoring and path forward the shock and vibration digest. SAGE Publications 35, 451–463 (2003)

    Google Scholar 

  10. Peairs, D.M., Park, G., Inman, D.J.: Improving accessibility of the impedance-based structural health monitoring method. J. Intell. Mater. Syst. Struct. 15, 129–139 (2004)

    Article  Google Scholar 

  11. Annamdas, V.G.M., Soh, C.K.: Embedded piezoelectric ceramic transducers in sandwiched beams. Smart Mater. Struct. 15(2), 538–549 (2006)

    Article  Google Scholar 

  12. Giurgiutiu, V., Rogers, C.A.: The electromechanical (E/M) impedance method for structural health monitoring and non-destructive evaluation. In: Proceedings of the International Workshop on Structural Health Monitoring, Stanford University, CA, September 18–20, 1997

  13. Cawley, P., Hutt T.D.: Fatigue crack detection using digital image correlation, Review of process in quantitative nondestructive evaluation. In: Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation, 20–25 July 2008, Chicago (IL), AIP Conf. Proc. 1096, pp. 689–696

  14. Gorinevsky, D., Kim, S.-J., Boyd, S., Gordon, G., Beard, S., Chang, F.-K.: Optimal estimation of accumulating damage trend from a series of SHM images, International Workshop on Structural Health Monitoring, IWSHM, p. 1340, September 2007, Stanford, CA

  15. Park, G., Farrar, C.R., di Scalea, F.L., Coccia, S.: Performance assessment and validation of piezoceramic active-sensors in structural health monitoring. Smart Mater. Struct. 15(6), 1673–1683 (2006)

    Article  Google Scholar 

  16. Annamdas, V.G.M., Radhika, M.A.: Electromechanical impedance of piezoelectric transducers for monitoring metallic and non metallic structures: A review of Wired, Wireless and Energy Harvesting Methods. J. Int. Mater. Syst. Struct. 24(9), 1019–1040 (2013)

    Article  Google Scholar 

  17. Sun, F.P., Chaudry, Z., Rogers, C.A., Majmundar, M., Liang, C.: Automated real-time structure health monitoring via signature pattern recognition. In: Proceedings of SPIE Smart Materials and Structures, San Diego, CA, Feb–March. vol. 2443, pp. 236–47 (1995)

  18. Yang, Y., Liu, H., Annamdas, V.G.M., Soh, C.K.: Monitoring damage propagation using PZT impedance transducers. Smart Mater. Struct. 18(4), 045003 (2009)

    Article  Google Scholar 

  19. Annamdas, V.G.M., Pang, J.H.L., Zhou, K., Song, B.: Efficiency of electromechanical impedance for load and damage assessment along thickness of PZT transducers in structural monitoring. J. Intell. Mater. Syst. Struct. 24(16), 1138–1152 (2013a)

  20. Giurgiutiu, V., Xu, B., Chao, Y., Liu, S., Gaddam, R.: Smart sensors for monitoring crack growth under fatigue loading conditions. Smart Struct. Syst. 2, 101–113 (2006)

    Article  Google Scholar 

  21. Soh, C.K., Lim, Y.Y.: Detection and characterization of fatigue induced damage using electromechanical impedance technique. Adv. Mater. Res. 79–82, 2031–2034 (2009)

    Article  Google Scholar 

  22. Lim, Y.Y., Soh, C.K.: Fatigue life estimation of a 1D aluminium beam under mode-I loading using the electromechanical impedance technique. Smart Mater. Struct. 20, 125001 (2011)

    Article  Google Scholar 

  23. Annamdas, V.G.M., Pang, H.L.J., Soh, C.K.: Durability and remaining useful fatigue life assessment of welded joint using impedance and wave propagation techniques, 20th CIRP International Conference on Life Cycle Engineering, Re-engineering Manufacturing for Sustainability, pp. 687–692. Springer, Singapore (2013b)

  24. Rupil, J., Roux, S., Hild, F., Vincent, L.: Fatigue micro-crack detection with digital image correlation. J. Strain Anal. Eng. Des. 46(6), 492–509 (2011)

    Article  Google Scholar 

  25. Bezensek, B., Hancock, J.W.: The non-coplanar coalescence of interacting defects in fatigue. In: Proceedings of the International Conference, SAE Brasil Fatigue, San Paolo, Brazil, December, 2001

  26. Annamdas, V.G.M., Soh, C.K.: Three dimensional electromechanical impedance model for multiple piezoceramic transducers with structure interaction model. J. Aerosp. Eng. 21(1), 35–44 (2008)

    Article  Google Scholar 

  27. Madhav, A.V.G., Soh, C.K.: Electromechanical impedance model of piezoceramic transducer: structure in presence of thick adhesive bonding. Smart Mater. Struct. 16(3), 673–686 (2007)

    Article  Google Scholar 

  28. IEEE: IEEE Standard on Piezoelectricity, Std 176 IEEE/ANSI (1987)

  29. DIC: Digital Image Correlation, Wikipedia, http://en.wikipedia.org/wiki/Digital_image_correlation (2013)

  30. Potdar, R.M., Kumar, A., Sahu, U.K.: Image correlation technique for strain measurement: an overview. Int. J. Emerg. Technol. Adv. Eng. 2(7), 269–271 (2012)

    Google Scholar 

  31. Keating, T.J., Wolf, P.R., Scarpace, F.L.: An improved method of digital image correlation. Photogramm. Eng. Remote Sens. 41(8), 993–1002 (1975)

    Google Scholar 

  32. Chu, T.C., Ranson, W.F., Sutton, M.A., Peters, W.H.: Applications of digital image correlation techniques to experimental mechanics. Exp. Mech. 25, 232 (1985)

    Article  Google Scholar 

  33. Tiwari, V., Sutton, M.A., McNeill, S.R., Xu, S., Deng, X., Fourney, W.L.: Application of 3D image correlation for full-field transient plate deformation measurements during blast loading. Int. J. Impact Eng. 36(6), 862–874 (2009)

    Article  Google Scholar 

  34. Helfrick, M.: An investigation of 3D digital image correlation for structural health monitoring and vibration measurement. ProQuest, ISBN 0549796975, 9780549796978 (2008)

  35. LeBlanc, B., Niezreck, C., Avitabile, P.: Structural health monitoring of helicopter hard landing using 3D digital image correlation, Proc. SPIE 7650, Health Monitoring of Structural and Biological Systems 76501V (April 08) (2010). doi:10.1117/12.847318

  36. Lim, Y.Y., Soh, C.K.: Effect of varying axial load under fixed boundary condition on admittance signatures of electromechanical impedance technique. J. Intell. Mater. Syst. Struct. 0, 7815–7826 (2012)

    Google Scholar 

  37. Park, S., Yun, C.B., Inman, D.J.: Structural health monitoring using electro-mechanical impedance sensors. Fatigue Fract. Eng. Mater. Struct. 31(8), 714–724 (2008)

    Article  Google Scholar 

  38. Palomino, L.V., Moura, Jr. J.R.V., Tsuruta, K.M., Rade, D.A., Steffen, Jr. V.: Impedance-based health monitoring and mechanical testing of structures. In: Proceedings of the IMAC-XXVII, February 9–12, 2009 Orlando, Florida USA, Society for Experimental Mechanics Inc.

  39. Chaudhry, Z., Joseph, T., Sun, F., Rogers, C.A.: Local-area health monitoring of aircraft via piezoelectric actuator/sensor patches. In: Proceedings of SPIE, San Diego, USA, March, 1995. pp. 2443

  40. Annamdas, V.G.M., Yang, Y.: Practical implementation of piezo-ceramic sensors in monitoring of excavation for transit station construction in Singapore. Struct. Control Health Monitor. 19(2), 231–245 (2012)

    Article  Google Scholar 

  41. Koh, Y.L., Rajic, N., Chiu, W.K., Galea, S.: Smart structures for composite repair. Compos. Struct. 47, 745–752 (1999)

    Article  Google Scholar 

  42. Park, G., Cudney, H.H., Inman, D.J.: Impedance-based health monitoring of civil structural components. J. Infrastruct. Syst. ASCE 6, 153–160 (2000a)

    Article  Google Scholar 

  43. Park, G., Cudney, H.H., Inman, D.J.: An integrated health monitoring technique using structural impedance sensors. J. Intell. Mater. Syst. Struct. 11, 448–455 (2000b)

    Google Scholar 

  44. Park, G., Cudney, H., Inman, D.J.: Feasibility of using impedance based damage assessment for pipeline systems. Earthq. Eng. Struct. Dyn. J. 30, 14631474 (2001a)

    Article  Google Scholar 

  45. Park, G., Kim, M.H., Inman, D.J.: Integration of smart materials into dynamics and control of inflatable space structures. J. Intell. Mater. Syst. Struct. 12, 423433 (2001b)

    Google Scholar 

  46. Yang, Y., Annamdas, V.G.M., Wang, C., Zhou, Y.: Application of multiplexed FBG and PZT impedance sensors for health monitoring of rocks. Sensors 8(1), 271–289 (2008). Special issue: Sensors for Urban Environmental Monitoring

    Article  Google Scholar 

  47. Lim, S.I., Cui, L., Liu, Y., Soh, C.K.: Monitoring fatigue crack growth in narrow structural components using Lamb wave technique. Proc. SPIE, Vol. 7981, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 798143, April 15, 2011

  48. Steel http://www.steelexpress.co.uk/aisi-sae.html (2013)

  49. VIC http://www.correlatedsolutions.com/index.php/products/vic-3d-2012 (2012)

  50. Shimadzu: Fatigue and Endurance Testing System of Shimadzu, http://www.shimadzu.ru/brochures/C225-E020_Servopulser_General.pdf (2012)

  51. Hewlett Packard: HP LF 4192A impedance analyzer Operation manual, Japan (2002)

  52. Madhav, A.V.G., Soh, C.K.: Uniplexing and multiplexing of PZT transducers for structural health monitoring. J. Intell. Mater. Syst. Struct. 19(4), 457–467 (2008)

    Google Scholar 

  53. Abé, M., Park, G., Inman, D.J.: Impedance-based monitoring of stress in thin structural members, Proceedings of 11th International Conference on Adaptive Structures and Technologies, October 23–26, 2000. Nagoya, Japan, pp. 285–292

  54. Annamdas, V.G.M., Yang, Y., Aiwei, M.: Monitoring buckling of metal structures using PZT transducers, IMAC-XXVI A Conference and Exposition on Structural Dynamics, Orlando, Florida, USA, 4–7 February, 2008 (paper no: 264)

  55. Annamdas, V.G.M., Yang, Y., Soh, C.K.: Influence of loading on the electromechanical admittance of piezoceramic transducers. Smart Mater. Struct. 16(5), 1888–1897 (2007)

    Article  Google Scholar 

  56. Annamdas, V.G.M.: Facts of piezo impedance technique in crack propagation studies for an engineering structure. Int. J. Aerosp. Sci. 1(2), 8–15 (2012)

    Google Scholar 

  57. Shuter, D.M., Geary, W.: Fatigue crack growth from two-dimensional surface defects. Int. J. Fatigue 18(6), 421 (1996)

    Google Scholar 

  58. Annamdas, V.G.M., Lim, S.I., Pang, J.H.L., Soh, C.K.: Monitoring of fatigue in welded beams using piezoelectric transducer based impedance technique. J. Nondestr. Eval. 33(1), 124–140 (2014). doi:10.1007/s10921-013-0209-5

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the A*STAR SERC Grant number 112-290-4014 and the SIMTech-NTU Joint Laboratory (Reliability) located at the School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), Singapore (e-mail: mhlpang@ntu.edu.sg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venu Gopal Madhav Annamdas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annamdas, V.G.M., Chew, Y., Pang, J.H.L. et al. Fatigue Growth Analysis of Pre Induced Surface Defects Using Piezoelectric Wafer Based Impedance Method and Digital Image Correlation System. J Nondestruct Eval 33, 413–426 (2014). https://doi.org/10.1007/s10921-014-0237-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0237-9

Keywords

Navigation