Skip to main content
Log in

Discrimination Between Cracks and Recrystallization in Steel Using Nonlinear Techniques

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

One major problem in ultrasonic NDT for steel products and welding inspection is that standard linear methods are often unable to distinguish the nature of signals. Partially recrystallized grains, voids, small cracks or inclusions in the piece under investigation could produce indications very similar in terms of acoustic energy reflected and ultrasonic peaks envelope. Here, we analyze the nonlinear response to ultrasonic excitations of steel bars with both kind of imperfections purposefully generated. Using the Scaling Subtraction Method as a tool for the analysis, we show differences in the nonlinear signature, which can be used to distinguish nondestructively a crack/delamination from a region with imperfect grains formation, with possible applications of this technique in the production cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Raj, B., Moorthy, V., Jayakumar, T., et al.: Assessment of microstructures and mechanical behaviour of metallic materials through non-destructive characterisation. Int. Mat. Rev. 48, 273–325 (2003)

    Article  Google Scholar 

  2. Pandey, J.C.: Study of recrystallisation in interstitial free (IF) steel by ultrasonic measurements. Ironmak. Steelmak. 35, 297–302 (2008)

    Article  Google Scholar 

  3. Meksen, T.M., Boudraa, B., Drai, R.: Automatic crack detection and characterization during ultrasonic inspection. J. NonDestr. Eval 29, 169–174 (2010)

    Article  Google Scholar 

  4. Kolkoori, S., Rahman, M.-U., Prager, J.: Effect of columnar grain orientation on ultrasonic plane wave energy reflection and transmission behaviour in anisotropic austenitic weld materials. J. NonDestr. Eval 31, 253–269 (2012)

    Article  Google Scholar 

  5. Islam, M.N., Arai, Y.: Ultrasonic back reflection evaluation of crack growth from PSBs in low-cycle fatigue of stainless steel under constant load amplitude. Mat. Sci. Eng. A 520, 49–55 (2009)

    Article  Google Scholar 

  6. Kenderian, S., Berndt, T.P., Green Jr, R.E., et al.: Ultrasonic attenuation and velocity in pearlitic rail steel during fatigue using longitudinal wave probing. J. Test. Eval. 31, 98–105 (2003)

    Google Scholar 

  7. Thompson, B.R.: Elastic-wave propagation in random polycrystals: fundamentals and application to nondestructive evaluation, in “Imaging of complex media with acoustic and seismic waves”. Book Ser. 84, 233–256 (2002)

    Google Scholar 

  8. Kube, C.M., Du, H., Ghoshal, G., et al.: Stress-dependent changes in the diffuse ultrasonic backscatter coefficient in steel: experimental results. J. Acoust. Soc. Am. 132, EL43–EL48 (2012)

    Article  Google Scholar 

  9. Hu, P., Kube, C.M., Koester, L.W., et al.: Mode-converted diffuse ultrasonic backscatter. J. Acoust. Soc. Am. 134, 982–990 (2013)

    Article  Google Scholar 

  10. Van den Abeele, K., De Visscher, J.: Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cem. Concr. Res. 30, 1453–1464 (2000)

    Article  Google Scholar 

  11. van den Abeele, K.E.A., Carmeliet, J., TenCate, J., et al.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestr. Eval. 12, 31–42 (2000)

    Article  Google Scholar 

  12. Bentahar, M., El Aqra, H., ElGuerjouma, R., et al.: Hysteretic elasticity in damaged concrete: quantitative analysis of slow and fast dynamics. Phys. Rev. B 73, 014116 (2006)

    Article  Google Scholar 

  13. Van den Abeele, K., Desadeleer, W., De Schutter, G., et al.: Active and passive monitoring of the early hydration process in concrete using linear and nonlinear acoustics. Cem. Concr. Res. 39, 426–432 (2009)

    Article  Google Scholar 

  14. Scalerandi, M., Gliozzi, A.S., Bruno, C.L.E., et al.: A scaling method to enhance detection of a nonlinear elastic response. Appl. Phys. Lett. 92, 101912 (2008)

    Article  Google Scholar 

  15. Bruno, C.L.E., Gliozzi, A.S., Scalerandi, M., et al.: Analysis of elastic nonlinearity using the scaling subtraction method. Phys. Rev. B 79, 064108 (2009)

    Article  Google Scholar 

  16. Payan, C., Garnier, V., Moysan, J.: Determination of nonlinear elastic constants and stress monitoring in concrete by coda waves analysis. Eur. J. Environ. Civ. Eng. 15, 519–531 (2011)

    Article  Google Scholar 

  17. Antonaci, P., Bruno, C.L.E., Bocca, P.G., et al.: Nonlinear ultrasonic evaluation of load effects on discontinuities in concrete. Cem. Concr. Res. 40, 340–346 (2010)

    Article  Google Scholar 

  18. Shah, A.A., Hirose, S.: Nonlinear ultrasonic investigation of concrete damaged under uniaxial compression step loading. J. Mat. Civ. Eng. 22, 476–484 (2010)

    Article  Google Scholar 

  19. Chen, J., Jayapalan, A.R., Kim, J.-Y.: Rapid evaluation of alkali–silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem. Concr. Res 40, 914–923 (2010)

    Article  Google Scholar 

  20. Yim, H.J., Kim, J.H., Park, S.-J., et al.: Characterization of thermally damaged concrete using a nonlinear ultrasonic method. Cem. Concr. Res. 42, 1438–1446 (2012)

    Article  Google Scholar 

  21. Scalerandi, M., Griffa, M., Antonaci, P., et al.: Nonlinear elastic response of thermally damaged consolidated granular media. J. Appl. Phys. 113, 154902 (2013)

    Article  Google Scholar 

  22. Cantrell, J.H., Yost, Y.T.: Acoustic nonlinearity and cumulative plastic shear strain in cyclically loaded metals. J. Appl. Phys. 113, 153506 (2013)

    Article  Google Scholar 

  23. Cantrell, J.H.: Ultrasonic harmonic generation from fatigue-induced dislocation substructures in planar slip metals and assessment of remaining fatigue life. J. Appl. Phys. 106, 093516 (2009)

    Article  Google Scholar 

  24. Walker, S.V., Kim, J.-Y., Qu, J.: Fatigue damage evaluation in A36 steel using nonlinear Rayleigh surface waves. NDT&E Int. 48, 10–15 (2012)

    Google Scholar 

  25. Ruiz, A., Ortiz, N., Medina, A.: Application of ultrasonic methods for early detection of thermal damage in 2205 duplex stainless steel. NDT&E Int. 54, 19–26 (2013)

    Article  Google Scholar 

  26. Ulrich, T.J., Johnson, P.A., Guyer, R.A.: Interaction dynamics of elastic waves with a complex nonlinear scatterer through the use of a time reversal mirror. Phys. Rev. Lett. 98, 104301 (2007)

    Article  Google Scholar 

  27. Ohara, Y., Mihara, T., Sasaki, R., et al.: Imaging of closed cracks using nonlinear response of elastic waves at subharmonic frequency. Appl. Phys. Lett. 90, 011902 (2007)

    Google Scholar 

  28. Baccouche, Y., et al.: Hysteretic nonlinearity analysis in damaged composite plates using guided waves. J. Acoust. Soc. Am. 133, EL256–EL261 (2013)

    Google Scholar 

  29. Renaud, G., Calle, S., Remenieras, J.-P., et al.: Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation. IEEE Trans. Ultrason. Ferroel. Freq. Control 55, 1497–1507 (2008)

    Article  Google Scholar 

  30. Renaud, G., Le Bas, P.-Y., Johnson, P.A.: Revealing highly complex elastic nonlinear (anelastic) behavior of earth materials applying a new probe: dynamic acoustoelastic testing. J. Geophys. Res. 117, B06202 (2012)

    Google Scholar 

  31. Ohara, Y., Shintaku, Y., Horinouchi, S., et al.: Enhancement of selectivity in nonlinear ultrasonic imaging of closed cracks using amplitude difference phased array. Jpn. J. Appl. Phys. 51, 07GB18 (2012)

    Article  Google Scholar 

  32. Bentahar, M., El Guerjouma, R., Idijmarene, S., et al.: Influence of noise on the threshold for detection of elastic nonlinearity. J. Appl. Phys. 113, 043516 (2013)

    Article  Google Scholar 

  33. S. Idjimarene et al.: Effects of experimental configuration on the detection threshold of hysteretic elastic non linearity, Ultrasonics, in press (2014).

  34. M. Scalerandi: Discriminating closed and open cracks in concrete using nonlinear ultrasounds and power laws. Cem. Concr. Res., submitted (2013)

  35. Long, R., Russell, J., Cawley, P.: Ultrasonic phased array inspection using full matrix capture. Insight 54, 380–385 (2012)

    Article  Google Scholar 

  36. Antonaci, P., Bruno, C.L.E., Gliozzi, A.S., et al.: Evolution of damage-induced nonlinearity in proximity of discontinuities in concrete. Int. J. Solids Struct. 47, 1603–1610 (2010)

    Article  MATH  Google Scholar 

  37. Donskoy, D., Sutin, A., Ekimov, A.: Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT&E Int. 34, 231–238 (2001)

    Article  Google Scholar 

  38. Delrue, S., van den Abeele, K.: Three-dimensional finite element simulation of closed delaminations in composite materials. Ultrasonics 52, 315–324 (2012)

    Article  Google Scholar 

  39. Scalerandi, M., Delsanto, P.P.: Modeling nonclassical nonlinearity, conditioning, and slow dynamics effects in mesoscopic elastic materials. Phys. Rev. B 68, 064107 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Scalerandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scalerandi, M., Gliozzi, A.S. & Olivero, D. Discrimination Between Cracks and Recrystallization in Steel Using Nonlinear Techniques. J Nondestruct Eval 33, 269–278 (2014). https://doi.org/10.1007/s10921-014-0234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0234-z

Keywords

Navigation