Skip to main content
Log in

Frequency Dependence of Second-Harmonic Generation in Lamb Waves

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The frequency dependence of the second-harmonic generation in Lamb waves is studied theoretically and numerically in order to examine the role of phase matching for sensitive evaluation of material nonlinearity. Nonlinear Lamb wave propagation in an isotropic plate is analyzed using the perturbation technique and the modal decomposition in the neighborhood of a typical frequency satisfying the phase matching. The results show that the ratio of the amplitude of second-harmonic Lamb mode to the squared amplitude of fundamental Lamb mode grows cumulatively in a certain range of fundamental frequency for a finite propagation distance. It is also shown that the frequency for which this ratio reaches maximum is close but not equal to the phase-matching frequency when the propagation distance is finite. This feature is confirmed numerically using the finite-difference time-domain method incorporating material and geometrical nonlinearities. The fact that the amplitude of second-harmonic mode becomes high in a finite range of fundamental frequency proves robustness of the material evaluation method using second harmonics in Lamb waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cantrell, J.H., Yost, W.T.: Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, 487–490 (2001). doi:10.1016/S0142-1123(01)00162-1

    Article  Google Scholar 

  2. Herrmann, J., Kim, J.-Y., Jacobs, L.J., Qu, J., Littles, J.W., Savage, M.F.: Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J. Appl. Phys. 99, 124913 (2006). doi:10.1063/1.2204807

    Article  Google Scholar 

  3. Kim, J.-Y., Jacobs, L.J., Qu, J., Littles, J.W.: Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120, 1266–1273 (2006). doi:10.1121/1.2221557

    Article  Google Scholar 

  4. Deng, M.: Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J. Appl. Phys. 85, 3051–3058 (1999). doi:10.1063/1.369642

    Article  Google Scholar 

  5. de Lima, W.J.N., Hamilton, M.F.: Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819–839 (2003). doi:10.1016/S0022-460X(02)01260-9

    Article  Google Scholar 

  6. Deng, M.: Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys. 94, 4152–4159 (2003). doi:10.1063/1.1601312

    Article  Google Scholar 

  7. Deng, M., Pei, J.: Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett. 90, 121902 (2007). doi:10.1063/1.2714333

    Article  Google Scholar 

  8. Pruell, C., Kim, J.-Y., Qu, J., Jacobs, L.J.: Evaluation of plasticity driven material damage using Lamb waves. Appl. Phys. Lett. 91, 231911 (2007). doi:10.1063/1.2811954

    Article  Google Scholar 

  9. Xiang, Y., Deng, M., Xuan, F.-Z., Liu, C.-J.: Experimental study of thermal degradation in ferritic Cr–Ni alloy steel plates using nonlinear Lamb waves. NDT&E Int. 44, 768–774 (2011). doi:10.1016/j.ndteint.2011.08.005

    Article  Google Scholar 

  10. Bermes, C., Kim, J.-Y., Qu, J., Jacobs, L.J.: Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90, 021901 (2007). doi:10.1063/1.2431467

    Article  Google Scholar 

  11. Srivastava, A., Lanza di Scalea, F.: On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vib. 323, 932–943 (2009). doi:10.1016/j.jsv.2009.01.027

    Article  Google Scholar 

  12. Xiang, Y., Deng, M., Xuan, F.-Z.: Analysis of second-harmonic generation of Lamb waves using a combined method in a two-layered solid waveguide. J. Appl. Phys. 106, 024902 (2009). doi:10.1063/1.3171942

    Article  Google Scholar 

  13. Müller, M.F., Kim, J.-Y., Qu, J., Jacobs, L.J.: Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am. 127, 2141–2152 (2010). doi:10.1121/1.3294714

    Article  Google Scholar 

  14. Matsuda, N., Biwa, S.: Phase and group velocity matching for cumulative harmonic generation in Lamb waves. J. Appl. Phys. 109, 094903 (2011). doi:10.1063/1.3569864

    Article  Google Scholar 

  15. Xiang, Y., Deng, M., Xuan, F.-Z., Liu, C.-J.: Cumulative second-harmonic analysis of ultrasonic Lamb waves for ageing behavior study of modified-HP austenite steel. Ultrasonics 51, 974–981 (2011). doi:10.1016/j.ultras.2011.05.013

  16. Deng, M., Wang, P., Lv, X.: Experimental observation of cumulative second-harmonic generation of Lamb-wave propagation in an elastic plate. J. Phys. D 38, 344–353 (2005). doi:10.1088/0022-3727/38/2/020

    Google Scholar 

  17. Deng, M., Yang, J.: Characterization of elastic anisotropy of a solid plate using nonlinear Lamb wave approach. J. Sound Vib. 308, 201–211 (2007). doi:10.1016/j.jsv.2007.07.029

  18. Deng, M., Xiang, Y., Liu, L.: Time-domain analysis and experimental examination of cumulative second-harmonic generation by primary Lamb wave propagation. J. Appl. Phys. 109, 113525 (2011). doi:10.1063/1.3592672

    Article  Google Scholar 

  19. Matlack, K.H., Kim, J.-Y., Jacobs, L.J., Qu, J.: Experimental characterization of efficient second harmonic generation of Lamb wave modes in a nonlinear elastic isotropic plate. J. Appl. Phys. 109, 014905 (2011). doi:10.1063/1.3527959

    Article  Google Scholar 

  20. Liu, Y., Chillara, V.K., Lissenden, C.J.: On selection of primary modes for generation of strong internally resonant second harmonics in plate. J. Sound Vib. 332, 4517–4528 (2013). doi:10.1016/j.jsv.2013.03.021

    Article  Google Scholar 

  21. Gol’dberg, Z.A.: Interaction of plane longitudinal and transverse elastic waves. Sov. Phys. Acoust. 6, 307–310 (1960)

    Google Scholar 

  22. Jones, G.L., Kobett, D.R.: Interaction of elastic waves in an isotropic solid. J. Acoust. Soc. Am. 35, 5–10 (1963). doi:10.1121/1.1918405

    Google Scholar 

  23. Landau, L.D., Lifshitz, E.M.: Theory of elasticity. Pergamon, New York (1959)

    Google Scholar 

  24. Norris, A.N.: Finite-amplitude waves in solids. In: Hamilton, M.F., Blackstock, D.T. (eds.) Nonlinear acoustics, pp. 263–277. Academic Press, New York (1998)

    Google Scholar 

  25. Auld, B.A.: Acoustic field and waves in solids. Wiley, London (1973)

    Google Scholar 

  26. Smith, R.T., Stern, R., Stephens, R.W.B.: Third-order elastic moduli of polycrystalline metals from ultrasonic velocity measurements. J. Acoust. Soc. Am. 40, 1002–1008 (1966). doi:10.1121/1.1910179

    Article  Google Scholar 

  27. Matsuda, N., Biwa, S.: A finite-difference time-domain technique for nonlinear elastic media and its application to nonlinear Lamb wave propagation. Jpn. J. Appl. Phys. 51, 07GB14 (2012). doi:10.1143/JJAP.51.07GB14

  28. Graves, R.W.: Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Am. 86, 1091–1106 (1996)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported by JSPS KAKENHI Grant Numbers 24\(\cdot \)2517 and 25289005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Biwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, N., Biwa, S. Frequency Dependence of Second-Harmonic Generation in Lamb Waves. J Nondestruct Eval 33, 169–177 (2014). https://doi.org/10.1007/s10921-014-0227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0227-y

Keywords

Navigation