Skip to main content
Log in

Broadband Laser-Ultrasonic Spectroscopy for Quantitative Characterization of Porosity Effect on Acoustic Attenuation and Phase Velocity in CFRP Laminates

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This work aims at applying the method of broadband laser-ultrasonic spectroscopy for quantitative evaluation of the effect of isolated dispersed voids and additional extended interply delaminations on the acoustic attenuation and on the phase velocity in CFRP laminates. This method is based on the laser thermoelastic generation of broadband reference pulses of longitudinal ultrasonic waves in the specially designed source of ultrasound. The high-sensitivity piezoelectric transducer is used to detect these pulses propagating normal to the fiber plies in composite specimens. The laminate specimens investigated have different total porosity levels up to 10.5 % determined by the X-ray computer tomography. The resonance peak of the attenuation coefficient and the corresponding jump of the phase velocity are observed governed by the periodic layered structure of the specimens. The absolute maximum and the frequency bandwidth of the resonance attenuation peak depend on the total porosity level formed by the predominant type of imperfections, either of isolated spheroidal voids entrapped in epoxy layers or of extended interply delaminations. With an increase of the specimen’s total porosity dispersion of the phase velocity becomes noticeable in the low-frequency band before the resonance jump. The derived empirical relations between the total porosity level and the parameters of the frequency dependencies of the ultrasonic attenuation coefficient and of the phase velocity can be used for rapid quantitative characterization of the structure of CFRP laminates subject to different fabrication conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adams, R.D., Cawley, P.: A review of defect types and nondestructive testing techniques for composites and bonded joints. NDT Int. 21, 208–222 (1988)

    Article  Google Scholar 

  2. Rubin, A.M., Jerina, K.L.: Evaluation of porosity in composite aircraft structures. Compos. Eng. 3, 601–618 (1993)

    Article  Google Scholar 

  3. Bhat, M.R., Binoy, M.P., Surya, N.M., Murthy, C.R.L., Engelbart, R.W.: Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 1430, pp. 1080–1087. American Institute of Physics, New York (2012)

    Google Scholar 

  4. Muller de Almeida, S.F., Nogueira Neto, Z.S.: Effect of void content on the strength of composite laminates. Compos. Struct. 28, 139–148 (1994)

    Article  Google Scholar 

  5. Leali Costa, M., Muller de Almeida, S.F., Cerqueira Rezende, M.: The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates. Compos. Sci. Technol. 61, 2101–2108 (2001)

    Article  Google Scholar 

  6. Zhang, A., Lu, H., Zhang, D.: Effects of voids on residual tensile strength after impact of hygrothermal conditioned CFRP laminates. Compos. Struct. 95, 322–327 (2013)

    Article  Google Scholar 

  7. Hsu, D.K., Uhl, K.M.: A morphological study of porosity defects in graphite-epoxy composites. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 6B, pp. 1175–1184. Plenum Press, New York (1987)

    Chapter  Google Scholar 

  8. Daniel, I.M., Wooh, S.C., Komsky, I.: Quantitative porosity characterization of composite materials by means of ultrasonic attenuation measurements. J. Nondestruct. Eval. 11, 1–8 (1992)

    Article  Google Scholar 

  9. Lin, L., Chen, J., Zhang, X., Li, X.: A novel 2-D random void model and its application in ultrasonically determined void content for composite materials. NDT E Int. 44, 254–260 (2011)

    Article  Google Scholar 

  10. Achenbach, J.D. (ed.): Evaluation of Materials and Structures by Quantitative Ultrasonics. Springer, Wien (1993)

    Google Scholar 

  11. Tittmann, B.R., Crane, R.L.: Ultrasonic inspection of composites. In: Kelly, A., Zweben, C. (eds.) Comprehensive Composite Materials, vol. 5, pp. 259–320. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  12. Rokhlin, S.I., Chimenti, D.E., Nagy, P.B.: Physical Ultrasonics of Composites. Oxford University Press, Oxford (2011)

    Google Scholar 

  13. Stone, D.E.W., Clarke, B.: Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics. Nondestruct. Test. 8, 137–145 (1975)

    Article  Google Scholar 

  14. Martin, B.G.: Ultrasonic wave propagation in fiber-reinforced solids containing voids. J. Appl. Phys. 48, 3368–3373 (1977)

    Article  Google Scholar 

  15. Reynolds, W.N., Wilkinson, S.J.: The analysis of fibre-reinforced porous composite materials by the measurement of ultrasonic wave velocities. Ultrasonics 16, 159–163 (1978)

    Article  Google Scholar 

  16. Hale, J.M., Ashton, J.N.: Ultrasonic attenuation in voided fibre-reinforced plastics. NDT Int. 21, 321–326 (1988)

    Article  Google Scholar 

  17. Takatsubo, J., Urabe, K., Tsuda, H., Toyama, N., Wang, B.: Experimental and theoretical investigation of ultrasound propagation in materials containing void inclusions. In: Thompson, D.O., Chimenti, D.E. (eds.) Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 700, pp. 1083–1090. American Institute of Physics, New York (2004)

    Google Scholar 

  18. Stone, M.A.: Evaluation of oven-cured, solid carbon/epoxy composites with various porosity levels. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 1096, pp. 1025–1032. American Institute of Physics, New York (2009)

    Google Scholar 

  19. Kogan, V.G., Hsu, D.K., Rose, J.H.: Characterization of flaws using the zeroes of the real and imaginary parts of the ultrasonic scattering amplitude. J. Nondestruct. Eval. 5, 57–68 (1985)

    Article  Google Scholar 

  20. Vary, A.: Material property characterization. In: Moore, P.O. (ed.) Nondestructive Testing Handbook, Ultrasonic Testing, 3rd edn. vol. 7, pp. 365–431. ASTM, Columbus (2007)

    Google Scholar 

  21. Fitting, D.W., Adler, L.: Ultrasonic Spectral Analysis for Nondestructive Evaluation. Plenum Press, New York (1981)

    Book  Google Scholar 

  22. Ourak, M., Nongaillard, B., Rouvaen, J.M., Ouaftouh, M.: Ultrasonic spectroscopy of composite materials. NDT Int. 24, 21–28 (1991)

    Article  Google Scholar 

  23. Jeong, H., Hsu, D.K.: Experimental analysis of porosity-induced ultrasonic attenuation and velocity change in carbon composites. Ultrasonics 33, 195–203 (1995)

    Article  Google Scholar 

  24. Scruby, C.B., Drain, L.E.: Laser Ultrasonics: Techniques and Applications. Adam Hilger, Bristol (1990)

    Google Scholar 

  25. Gusev, V.E., Karabutov, A.A.: Laser Optoacoustics. American Institute of Physics, New York (1993)

    Google Scholar 

  26. Karabutov, A.A., Matrosov, M.P., Podymova, N.B., Pyzh, V.A.: Acoustic pulse spectroscopy using a laser sound source. Sov. Phys. Acoust. 37, 157–163 (1991)

    Google Scholar 

  27. Karabutov, A.A., Matrosov, M.P., Podymova, N.B.: Wideband ultrasonic spectroscopy of ceramic materials by means of a laser sound generator. Sov. Phys. Acoust. 38, 194–195 (1992)

    Google Scholar 

  28. Kaksis, A.O., Karabutov, A.A., Podymova, N.B., Ukharskii, V.A.: Effect of microplasticity on ultrasonic attenuation in glass-fiber composites. Acoust. Phys. 40, 719–722 (1994)

    Google Scholar 

  29. Diot, G., Koudri-David, A., Walaszek, H., Guégan, S., Flifla, J.: Non-destructive testing of porosity in laser welded aluminium alloy plates: laser ultrasound and frequency-bandwidth analysis. J. Nondestruct. Eval. 32, 354–361 (2013). doi:10.1007/s10921-013-0189-5

    Google Scholar 

  30. Monchalin, J.-P., Aussel, J.-D.: Ultrasonic velocity and attenuation determination by laser-ultrasonics. J. Nondestruct. Eval. 9, 211–221 (1990)

    Article  Google Scholar 

  31. Tittmann, B.R., Linebarger, R.S., Addison, R.C. Jr.: Laser-based ultrasonics on Gr/epoxy composite. J. Nondestruct. Eval. 9, 229–238 (1990)

    Article  Google Scholar 

  32. Monchalin, J.-P.: Laser—ultrasonics: from the laboratory to industry. In: Thompson, D.O., Chimenti, D.E. (eds.) Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 700, pp. 3–31. American Institute of Physics, New York (2004)

    Google Scholar 

  33. Sakamoto, J.M.S., Baba, A., Tittmann, B.R., Mulry, B.R., Kropf, M., Pacheco, G.M.: Nondestructive inspection of a composite material sample using laser ultrasonic system with beam homogenizer. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 1335, pp. 935–941. American Institute of Physics, New York (2011)

    Google Scholar 

  34. Karabutov, A.A., Savateeva, E.V., Podymova, N.B., Oraevsky, A.A.: Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer. J. Appl. Phys. 87, 2003–2014 (2000)

    Article  Google Scholar 

  35. Truell, R., Elbaum, C., Chick, B.: Ultrasonic Methods in Solid State Physics. Academic Press, New York (1969)

    Google Scholar 

  36. Brekhovskikh, L.M., Godin, O.A.: Acoustics of Layered Media. I: Plane and Quasi-Plane Waves. Springer, New York (1990)

    Book  Google Scholar 

  37. Scott, W.R., Gordon, P.F.: Ultrasonic spectrum analysis for nondestructive testing of layered composite materials. J. Acoust. Soc. Am. 62, 108–116 (1984)

    Article  Google Scholar 

  38. Nayfeh, A.: The general problem of elastic wave propagation in multilayered anisotropic media. J. Acoust. Soc. Am. 89, 1521–1531 (1991)

    Article  Google Scholar 

  39. Kushwaha, M.S., Halevi, P., Martinez, G.: Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B 49, 2313–2322 (1994)

    Article  Google Scholar 

  40. Karabutov, A.A., Kozhushko, V.V., Pelivanov, I.M., Podymova, N.B.: Nondestructive evaluation of one-dimensional periodic structures by transmission of laser-excited wide-band acoustic pulses. Mech. Compos. Mater. 37, 153–158 (2001)

    Article  Google Scholar 

  41. Karabutov, A.A, Kosevich, Yu.A., Sapozhnikov, O.A.: Bloch oscillations of an acoustic field in a layered structure. Acoust. Phys. 59, 137–147 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Podymova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podymova, N.B., Karabutov, A.A. Broadband Laser-Ultrasonic Spectroscopy for Quantitative Characterization of Porosity Effect on Acoustic Attenuation and Phase Velocity in CFRP Laminates. J Nondestruct Eval 33, 141–151 (2014). https://doi.org/10.1007/s10921-013-0210-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-013-0210-z

Keywords

Navigation