Skip to main content
Log in

Nondestructive Monitoring of Ageing of Alkali Resistant Glass Fiber Reinforced Cement (GRC)

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Glass fiber reinforced cement (GRC) is a composite material made of portland cement mortar and alkali resistant (AR) fibers. AR fibers are added to portland cement to give the material additional flexural strength and toughness. However, ageing deteriorates the fibers and as a result the improvement in the mechanical properties resulted from the fiber addition disappears as the structure becomes old. The aim of this paper is monitoring GRC ageing by nondestructive evaluation (NDE) techniques. Two different NDE techniques—(1) nonlinear impact resonant acoustic spectroscopy analysis and (2) propagating ultrasonic guided waves—are used for this purpose. Both techniques revealed a reduction of the nonlinear behavior in the GRC material with ageing. Specimens are then loaded to failure to obtain their strength and stiffness. Compared to the un-aged specimens, the aged specimens are found to exhibit more linear behavior, have more stiffness but less toughness. Finally, undisturbed fragments on the fracture surface from mechanical tests are inspected under the electron microscope, to understand the fundamental mechanisms that cause the change in the GRC behavior with ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bentur, A., Fibre, M.S.: Reinforced Cementitious Composites, 2nd edn. Taylor and Francis, New York (2007)

    Google Scholar 

  2. Purnell, P., Short, N.R., Page, C.L.: A static fatigue model for the durability of glass fibre reinforced cement. J. Mater. Sci. 36(22), 5385–5390 (2001)

    Article  Google Scholar 

  3. Ferreira, J.G., Branco, F.A.: Structural application of GRC in telecommunication towers. Constr. Build. Mater. 21(1), 19–28 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bentur, A., Ben-Bassat, M., Schneider, D.: Durability of glass-fiber-reinforced cements with different alkali-resistant glass fibers. J. Am. Ceram. Soc. 68(4), 203–208 (1985)

    Article  Google Scholar 

  5. Cheng, J., Liang, W., Hu, Y., Chen, Q., Frischat, G.H.: Development of a new alkali resistant coating. J. Sol-Gel Sci. Technol. 27(3), 309–313 (2003)

    Article  Google Scholar 

  6. Liang, W., Cheng, J., Hu, Y., Luo, H.: Improved properties of GRC composites using commercial E-glass fibers with new coatings. Mater. Res. Bull. 37(4), 641–646 (2002)

    Article  Google Scholar 

  7. Payá, J., Bonilla, M., Borrachero, M.V., Monzó, J., Peris-Mora, E., Lalinde, L.F.: Reusing fly ash in glass fibre reinforced cement: a new generation of high-quality GRC composites. Waste Manag. 27(10), 1416–1421 (2007)

    Article  Google Scholar 

  8. Zhang, Y., Sun, W., Shang, L., Pan, G.: The effect of high content of fly ash on the properties of glass fiber reinforced cementitious composites. Cem. Concr. Res. 27(12), 1885–1891 (1997)

    Article  Google Scholar 

  9. Purnell, P., Short, N., Page, C.: Super-critical carbonation of glass-fibre reinforced cement. Part 1: mechanical testing and chemical analysis. Composites, Part A, Appl. Sci. Manuf. 32(12), 1777–1787 (2001)

    Article  Google Scholar 

  10. EN 1170-8:2008. Test method for glass-fibre reinforced cement. Cyclic weathering type test

  11. Purnell, P.: Interpretation of climatic temperature variations for accelerated ageing models. J. Mater. Sci. 39(1), 113–118 (2004)

    Article  Google Scholar 

  12. Enfedaque, A., Sánchez Paradela, L., Sánchez-Gálvez, V.: An alternative methodology to predict aging effects on the mechanical properties of glass fiber reinforced cements (GRC). Constr. Build. Mater. 27(1), 425–431 (2012)

    Article  Google Scholar 

  13. Litherland, K.L., Maguire, P., Proctor, B.A.: A test method for the strength of glass fibres in cement. Int. J. Cem. Compos. Lightweight Concr. 6(1), 39–45 (1984)

    Article  Google Scholar 

  14. Itterbeeck, P., Cuypers, H., Orlowsky, J., Wastiels, J.: Evaluation of the strand in cement (SIC) test for GRCs with improved durability. Mater. Struct. 41(6), 1109–1116 (2007)

    Article  Google Scholar 

  15. Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30 (1999)

    Article  Google Scholar 

  16. Johnson, P.A.: Nonequilibrium nonlinear dynamics in solids: state of the art. In: Delsanto, P.P. (ed.) Universality of Nonclassical Nonlinearity, pp. 49–69. Springer, New York (2006)

    Chapter  Google Scholar 

  17. Guyer, R.A., McCall, K.R., Boitnott, G.N.: Hysteresis, discrete memory, and nonlinear wave propagation in rock: a new paradigm. Phys. Rev. Lett. 74(17), 3491–3494 (1995)

    Article  Google Scholar 

  18. Mayergoyz, I.D.: Mathematical Models of Hysteresis and Their Applications. Academic Press, New York (2003)

    Google Scholar 

  19. Van Den Abeele, K.E.A., Carmeliet, J., Ten Cate, J.A., Johnson, P.A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12(1), 31–42 (2000)

    Article  Google Scholar 

  20. Chen, J., Jayapalan, A.R., Kim, J.Y., Kurtis, K.E., Jacobs, L.J.: Rapid evaluation of alkali–silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem. Concr. Res. 40(6), 914–923 (2010)

    Article  Google Scholar 

  21. Leśnicki, K.J., Kim, J.Y., Kurtis, K.E., Jacobs, L.J.: Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique. Nondestruct. Test. Eval. Int. 44(8), 721–727 (2011)

    Google Scholar 

  22. Bouchaala, F., Payan, C., Garnier, V., Balayssac, J.P.: Carbonation assessment in concrete by nonlinear ultrasound. Cem. Concr. Res. 41(5), 557–559 (2011)

    Article  Google Scholar 

  23. Eiras, J.N., Popovics, J.S., Borrachero, M.V., Monzó, J., Payá, J.: Nonlinear impact resonant acoustic spectroscopy to discern mechanical damage in cement based materials. In: 15th International Conference on Experimental Mechanics, Porto, Portugal (2012)

    Google Scholar 

  24. Kundu, T.: Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization. CRC Press, Boca Raton (2004)

    Google Scholar 

  25. Kundu, T.: Ultrasonic and Electromagnetic NDE for Structure and Material Characterization—Engineering and Biomedical Applications. CRC Press, Boca Raton (2012)

    Google Scholar 

  26. Dutta, D., Sohn, H., Harries, K.A., Rizzo, P.: A nonlinear acoustic technique for crack detection in metallic structures. Struct. Health Monit. 8(3), 251–262 (2009)

    Article  Google Scholar 

  27. Aymerich, F., Staszewski, W.J.: Impact damage detection in composite laminates using nonlinear acoustics. Composites, Part A, Appl. Sci. Manuf. 41(9), 1084–1092 (2010)

    Article  Google Scholar 

  28. EN 1170-1:1998. Precast concrete products. Test method for glass-fibre reinforced cement. Measuring the consistency of the matrix, “Slump test” method

  29. Montgomery, P.L.: A block Lanczos algorithm for finding dependencies over GF(2). In: EUROCRYPT ’95. Lecture Notes in Computer Science, vol. 921, pp. 106–120. Springer, Berlin (1995)

    Chapter  Google Scholar 

  30. EN 1170-5:1998. Precast concrete products. Test method for glass-fibre reinforced cement. Measuring bending strength, “complete bending test” method

  31. Romero, R., Zúnica, L.R.: Métodos Estadísticos en Ingeniería. Universitat Politècnica València, Valencia (2005)

  32. Kundu, T.: Fundamentals of Fracture Mechanics. CRC Press, Boca Raton (2008)

    Google Scholar 

  33. ASTM C 215:08. Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens (2008)

  34. Hewlett, P.C.: Lea’s Chemistry of Cement and Concrete, 4th edn. Butterworth-Heinemann, Oxford (2003)

    Google Scholar 

  35. Zhu, W., Bartos, P.J.M.: Assessment of interfacial microstructure and bond properties in aged GRC using a novel microindentation method. Cem. Concr. Res. 27(11), 1701–1711 (1997)

    Article  Google Scholar 

  36. Purnell, P., Buchanan, A.J., Short, N.R., Page, C.L., Majumdar, A.J.: Determination of bond strength in glass fibre reinforced cement using petrography and image analysis. J. Mater. Sci. 35(18), 4653–4659 (2000)

    Article  Google Scholar 

  37. Visalvanich, K., Naaman, A.E.: Fracture model for fiber reinforced concrete. J. ACI Proc. 80(2), 128–138 (1983)

    Google Scholar 

  38. Kundu, T., Jang, H.S., Cha, Y.H., Desai, C.S.: A simple model to predict the effect of volume fraction, diameter, and length of fibers on strength variation of fiber reinforced brittle matrix composites. Int. J. Numer. Anal. Methods Geomech. 24, 655–673 (2000)

    Article  MATH  Google Scholar 

  39. Li, V.C., Maalej, M.: Toughening in cement based composites. Part II: fiber reinforced composites. Cem. Concr. Compos. 18, 239–249 (1996)

    Article  MATH  Google Scholar 

  40. Van Den Abeele, K.E.A., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12(1), 17–30 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the financial support of the Ministerio de Ciencia e Innovación MICINN, Spain, and FEDER funding (Ondacem Project: BIA 2010-19933) and BES-2011-044624. Also thanks to PAID-02-11 Program from Universitat Politècnica de Valencia.

The authors would also like to acknowledge the contributions of José Benedito (Universitat Politècnica de Valencia) and John S. Popovics (University of Illinois at Urbana-Champaign) to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kundu.

Appendix

Appendix

Material nonlinearity for aged and un-aged specimens was also measured from the side band energy variations with ageing for two dominant peaks in the frequency ranges, 105–145 kHz and 145–185 kHz. Figure 17 shows how the side band energy was approximately computed. If the peak amplitude is denoted by ‘A’ then it is assumed that the side band starts at a frequency for which the amplitude value is reduced to R×A as shown in the figure. It should be noted that R is a small factor, say between 0.1 and 0.3. For each peak a total frequency range of 2×S=40 kHz is assumed to include the central peak width and the two side band lengths on its two sides. For example in Fig. 17 the 40 kHz range extends from 105 kHz to 145 kHz. As the value of R increases the side band lengths should increase but the central peak width should decrease. If the area under the two sidebands is (E1+E2) and the area under the central peak is Ec then the ratio \(N = \frac{E1 + E2}{Ec}\) should increase with R. It should also increase if the material nonlinearity increases even when the R value is kept constant. Therefore for a fixed value of R, the parameter N can be considered as an indirect measure of the material nonlinearity.

Fig. 17
figure 17

The shaded area (E1+E2) is a measure of the side band energy around a major peak of amplitude A

Figure 18 shows plots of N for three different GRC specimens before and after the ageing processes. Two graphs are obtained from two dominant peaks. In each graph N values are provided for five values of R (0.1, 0.15, 0.2, 0.25 and 0.30) for three different specimens before ageing (open markers) and after ageing (solid triangular markers). Note that irrespective of the R value, the nonlinearity parameter N in general decreases with ageing.

Fig. 18
figure 18

Plots of nonlinearity parameter N before and after ageing for different values of R (A) frequency range 105–145, (B) frequency range 145–185 kHz. Open markers are for un-aged specimens and solid triangles are for aged specimens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eiras, J.N., Kundu, T., Bonilla, M. et al. Nondestructive Monitoring of Ageing of Alkali Resistant Glass Fiber Reinforced Cement (GRC). J Nondestruct Eval 32, 300–314 (2013). https://doi.org/10.1007/s10921-013-0183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-013-0183-y

Keywords

Navigation