Skip to main content
Log in

SAFT Imaging of Transverse Cracks in Austenitic and Dissimilar Welds

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Up to now there is no sufficient technique to detect transverse cracks in austenitic and dissimilar welds which recently are of increasing interest in the integrity surveillance of nuclear power plants as well as in quality control of longitudinally welded pipes. Weld inspection by interpretation of single A-scans will lead to erroneous results due to effects caused by anisotropy and in worst case might leave flaws undetected. Therefore, imaging techniques such as the synthetic aperture focusing technique (SAFT) should be used. If the SAFT algorithm is applied on data taken from austenitic welds, the inhomogeneous, anisotropic structure of these welds has to be taken into account in order to properly attribute amplitudes measured in A-scans to the corresponding coordinates in the region of interest. While this has been investigated in the past, all attempts so far were limited to the imaging of longitudinal cracks which requires a less complicated setup than the imaging of transverse cracks. In this paper we give an outline of our attempts to reconstruct images of transverse cracks in different welds. For this purpose a SAFT program based on ray tracing and a layered structure weld model derived from an empirical model of grain orientations in welds are used. The results of the image reconstruction on experimental data are shown and compared to images obtained by assuming an isotropic homogeneous model. Root reflection and crack tip echo are clearly visible which allows an estimation of size and position of the crack with good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Spies, M.: Analytical methods for modeling of ultrasonic nondestructive testing of anisotropic media. Ultrasonics 42, 213–219 (2004)

    Article  Google Scholar 

  2. Langenberg, K.J., Hannemann, R., Kaczorowski, T., Marklein, R., Koehler, B., Schurig, C., Walte, F.: Application of modeling techniques for ultrasonic austenitic weld inspection. NDT E Int. 33, 465–480 (2000)

    Article  Google Scholar 

  3. Shlivinski, A., Langenberg, K.J.: Defect imaging with elastic waves in inhomogeneous-anisotropic materials with composite geometries. Ultrasonics 46, 89–104 (2007)

    Article  Google Scholar 

  4. Kröning, M., Bulavinov, A., Reddy, K.M., Walte, F., Dalichow, M.: Improving the inspectability of stainless steel and dissimilar metal welded joints using inverse phase-matching of phased array time-domain signals. In: Proceedings of the 17th WCNDT, Shanghai (2008). Paper 451

    Google Scholar 

  5. Pudikov, S., Bulavinov, A., Pinchuk, R.: Innovative ultrasonic testing (UT) of nuclear components by sampling phased array with 3D visualization of inspection results. In: DGZfP Proceedings BB 125 (8th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components 2010), Berlin (2011). Paper Th. 2.C.6

    Google Scholar 

  6. Matthies, K., et al.: Ultraschallprüfung von austenitischen Werkstoffen. DGZfP, Berlin (2009)

    Google Scholar 

  7. Langenberg, K.J., Marklein, R., Mayer, K.: Theoretische Grundlagen der zerstörungsfreien Materialprüfung mit Ultraschall. Oldenburg, München (2009)

    Book  Google Scholar 

  8. Ogilvy, J.A.: Ultrasonic reflection properties of planar defects within austenitic welds. Ultrasonics 26(6), 318–327 (1988)

    Article  Google Scholar 

  9. Spies, M., Rieder, H.: Synthetic aperture focusing of ultrasonic inspection data to enhance the probability of detection in strongly attenuating materials. NDT E Int. 43, 425–431 (2010)

    Article  Google Scholar 

  10. Müller, W., Schmitz, V., Schäfer, G.: Reconstruction by the synthetic aperture focussing technique (SAFT). Nucl. Eng. Des. 94, 393–404 (1986)

    Article  Google Scholar 

  11. Schmitz, V., Chaklov, S., Müller, W.: Experiences with the synthetic aperture focusing technique in the field. Ultrasonics 38, 731–738 (2000)

    Article  Google Scholar 

  12. Spies, M., Jager, W.: Synthetic aperture focusing for defect reconstruction in anisotropic media. Ultrasonics 41, 125–131 (2003)

    Article  Google Scholar 

  13. Silk, M.G.: A computer model for ultrasonic propagation in complex orthotropic structures. Ultrasonics 19(5), 208–212 (1981)

    Article  Google Scholar 

  14. Rokhlin, S.I., Bolland, T.K., Adler, L.: Reflection and refraction of elastic waves on a plane interface between two generally anisotropic media. J. Acoust. Soc. Am. 79(4), 906–918 (1986)

    Article  Google Scholar 

  15. Ogilvy, J.A.: Computerized ultrasonic ray tracing in austenitic steel. NDT Int. 18(2), 67–77 (1985)

    Article  Google Scholar 

  16. Ogilvy, J.A.: A layered media model for ray propagation in anisotropic inhomogeneous materials. Appl. Math. Model. 14, 237–247 (1990)

    Article  MATH  Google Scholar 

  17. Ogilvy, J.A.: Ultrasonic beam profiles and beam propagation in an austenitic weld using a theoretical ray tracing model. Ultrasonics 24(6), 337–347 (1986)

    Article  Google Scholar 

  18. Ogilvy, J.A.: On the use of focused beams in austenitic welds. Br. J. Non-Destr. Test. 29(4), 238–246 (1987)

    Google Scholar 

  19. Harker, A.H., Ogilvy, J.A.: Coherent wave propagation in inhomogeneous materials: a comparison of theoretical models. Ultrasonics 29(3), 235–244 (1991)

    Article  Google Scholar 

  20. Spies, M.: Modeling of transducer fields in inhomogeneous anisotropic materials using Gaussian beam superposition. NDT E Int. 33, 155–162 (2000)

    Article  Google Scholar 

  21. Moysan, J., Apfel, A., Corneloup, G., Chassignole, B.: Modelling the grain orientation of austenitic stainless steel multipass welds to improve ultrasonic assessment of structural integrity. Int. J. Press. Vessels Piping 80, 77–85 (2003)

    Article  Google Scholar 

  22. Moysan, J., Apfel, A., Corneloup, G., Chassignole, B.: Simulations of the influence of the grains orientations on ultrasounds. In: Proceedings of the 16th WCNDT, Montreal (2004). Paper 414

    Google Scholar 

  23. Apfel, A., Moysan, J., Corneloup, G., Fouquet, T., Chassignole, B.: Coupling an ultrasonic propagation code with a model of the heterogeneity of multipass welds to simulate ultrasonic testing. Ultrasonics 43, 447–456 (2005)

    Article  Google Scholar 

  24. Connolly, G.D., Lowe, M.J.S., Temple, J.A.G., Rokhlin, S.I.: Correction of ultrasonic array images to improve reflector sizing and location in inhomogeneous materials using a ray-tracing model. J. Acoust. Soc. Am. 127(5), 2802–2812 (2010)

    Article  Google Scholar 

  25. Spencer, G.H., Murty, M.V.R.K.: General ray-tracing procedure. J. Opt. Soc. Am. 41, 672–678 (1961)

    Google Scholar 

  26. Schmitz, V., Walte, F., Chaklov, S.V.: 3D ray tracing in austenite materials. NDT E Int. 32, 201–213 (1999)

    Article  Google Scholar 

  27. Spies, M., Rieder, H., Dillhöfer, A., Dugan, S.: Abbildung und Größenbestimmung von Spannungskorrosionsrissen in austenitischen Komponenten mittels Synthetischer Apertur Fokus Technik. In: Berichtsband DGZfP-Jahrestagung 2011, Bremen (2011). Paper Di. 3.A.1

    Google Scholar 

  28. Munikoti, V., Brekow, G., Tessaro, U., Erhard, A.: Ultrasonic testing for transverse discontinuities in dissimilar welds: theoretical and experimental results. Mater. Eval. 62(11), 1148–1153 (2004)

    Google Scholar 

  29. Kolkoori, S., Rahman, M.U., Prager, J.: Effect of columnar grain orientation on ultrasonic plane wave energy reflection and transmission behaviour in anisotropic austenitic weld materials. J. Nondestruct. Eval. 31(3), 253–269 (2012)

    Article  Google Scholar 

  30. Bazulin, A.E., Bazulin, E.G., Koval, D.A.: Application of the TANDEM scheme for reconstructing flaw images by the SAFT method. Russ. J. Nondestruct. Test. 45(7), 452–463 (2009)

    Article  Google Scholar 

  31. Schenk, G., Völz, U., Dohse, E., Bauer, L.: COMPASXL—outstanding number of channels with a new phased array system. In: Proceedings of ECNDT, Berlin, vol. 11, pp. 25–29 (2006)

    Google Scholar 

  32. Kitze, J., Prager, J., Boehm, R., Völz, U., Montag, H.J.: SAFT—reconstruction in ultrasonic immersion technique using phased array transducers. In: Review of Progress in QNDE AIP Conf. Proc., Burlington, vol. 1430, pp. 825–832 (2012)

    Google Scholar 

  33. Vandermeulen, W., Scibetta, M., Leenaers, A., Schuurmans, J., Gérard, R.: Measurement of the young modulus anisotropy of a reactor pressure vessel cladding. J. Nucl. Mater. 372, 249–255 (2008)

    Article  Google Scholar 

  34. Rinkevich, A.B., Smorodinskii, Y.G.: Elastic waves in an inhomogeneous austenite plate in the model of a transversely isotropic medium. Russ. J. Nondestruct. Test. 37(7), 475–495 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out at the Federal Institute for Materials Research and Testing (Bundesanstalt für Materialforschung und -prüfung; BAM), Berlin, Germany supported by the GRS (Gesellschaft für Anlagen- und Reaktorsicherheit).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Höhne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höhne, C., Kolkoori, S., Rahman, MU. et al. SAFT Imaging of Transverse Cracks in Austenitic and Dissimilar Welds. J Nondestruct Eval 32, 51–66 (2013). https://doi.org/10.1007/s10921-012-0159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-012-0159-3

Keywords

Navigation