Skip to main content

Advertisement

Log in

Water Pollution and Environmental Concerns in Anesthesiology

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Medications administered by anesthesia health care providers and subsequently excreted into the water supply system have the potential to affect ecological systems. Presently, there is a lack of literature examining which medications or metabolites enter the waste stream. Further, their potential environmental impacts are often unknown or simply not considered as an externality of medical practice. Recent work examining the practice of anesthesiology has explored the solid waste stream, and the global warming potential of anesthetic gases, however the potential aquatic impacts remain unexplored. To address the potential for waterborne pollution and environmental toxicity, we extracted the total intravenous medications (by mass) administered by anesthesiologists in 2017 at The University of Vermont Medical Center (UVMMC), a mid-size regional Level 1 trauma center in Burlington, VT. The most commonly administered medications were: cefazolin, propofol, acetaminophen, sugammadex and lidocaine. To estimate the amount of each medication that entered the wastewater stream, we used published metabolism profiles to adjust from the total amount administered to the amount excreted unchanged or as prominent metabolites. For each medication we reviewed existing literature concerning their environmental fate and impacts in water. Due to the constraints of current knowledge, it is not possible to determine the exact fate and impacts of these drugs. Some medications, like propofol, have the potential for significant bioaccumulation and persistence. Others, such as lidocaine and acetaminophen, have short half-lives in the environment but their constant delivery and excretion result in pseudo-persistence. The current literature mostly assesses acute exposure at doses higher than could be expected in the environment on select species. While significant toxicities across a variety of species have been found repeatedly, chronic low dose exposures require further study for all the medications discussed. Finally, multi-drug impacts are likely to be more impactful than single-drug toxicities. While we cannot state definitive impacts, the pharmaceuticals most used in anesthesiology have a clear toxic potential and future studies should more closely examine the relative contribution of anesthesia to pharmaceutical pollution, as well as points of intervention for minimizing these unintended consequences of healthcare delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heilig S, Kushner T, Thomasma D, Agich G, Atchley W, Bayley C, Bauer K, Burack J, Burgess M, Childs B, Cranford R, Daniels N, Daniels S, DeRenzo E, Donohoe M, Dugan D, Dworkin G, Goldworth A, Goodman K, Hardwig J, Hick C, Iserson K, Jameton A, Jonsen A, Kirnsma G, Kennedy L, Kittay E, Koenig B, Lambrinidou Y, Langerman A, Lee P, van Leeuwen E, Light A, Loeben G, Loewy E, Meeker T, Meier D, Moyer F, Mozdzierz G, Nie J, d'Oronzio J, O'Connell L, Picozzi M, Potter V, Radest H, Rubin S, Ruddick W, Scanlon C, Self D, Setlak P, Sharpe V, Silvers A, Smith M, Steinbrook B, Tanner N, Trotter G, Veatch R, Weber L, White M, Winslow G, Wolpe P, Young E, Zoloth L (2002) Healthcare without harm: An ethical imperative. Cambridge Quarterly of Healthcare Ethics 11 (2):203-207

    Article  CAS  Google Scholar 

  2. Jameton A, Pierce J (2001) Environment and health: 8. Sustainable health care and emerging ethical responsibilities. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne 164 (3):365-369

    CAS  PubMed  Google Scholar 

  3. Chung JW, Meltzer DO (2009) Estimate of the carbon footprint of the US health care sector. Jama 302 (18):1970-1972. doi:https://doi.org/10.1001/jama.2009.1610

    Article  CAS  PubMed  Google Scholar 

  4. Kwakye G, Brat GA, Makary MA (2011) Green surgical practices for health care. Archives of surgery (Chicago, Ill : 1960) 146 (2):131-136. doi:https://doi.org/10.1001/archsurg.2010.343

    Article  Google Scholar 

  5. Vatovec C, Senier L, Bell M (2013) An Ecological Perspective on Medical Care: Environmental, Occupational, and Public Health Impacts of Medical Supply and Pharmaceutical Chains. Ecohealth 10 (3):257-267. doi: https://doi.org/10.1007/s10393-013-0855-1

    Article  PubMed  Google Scholar 

  6. Jameton A, Pierce J (2001) Environment and health: 8. Sustainable health care and emerging ethical responsibilities. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne 164 (3):365

    CAS  Google Scholar 

  7. Jameton A, McGuire C (2002) Toward sustainable health-care services: principles, challenges, and a process. International Journal of Sustainability in Higher Education 3 (2):113-127

    Article  Google Scholar 

  8. Albert MG, Rothkopf DM (2015) Operating room waste reduction in plastic and hand surgery. Plastic surgery (Oakville, Ont) 23 (4):235-238

    Article  Google Scholar 

  9. Vatovec C, Senier L, Bell MM (2013) The ecology of dying: commodity chains, governance, and the medicalization of end-of-life care. In: Ecological Health: Society, Ecology and Health. Emerald Group Publishing Limited, pp. 195-215

    Chapter  Google Scholar 

  10. Stall NM, Kagoma YK, Bondy JN, Naudie D (2013) Surgical waste audit of 5 total knee arthroplasties. Canadian Journal of Surgery 56 (2):97-102. doi:https://doi.org/10.1503/cjs.015711

    Article  PubMed Central  Google Scholar 

  11. Alfa-Wali M (2009) Surgery and water. Journal of the Royal Society of Medicine 102 (2):81. doi:https://doi.org/10.1258/jrsm.2009.090018

    Article  PubMed  PubMed Central  Google Scholar 

  12. Potera C (2012) Strategies for Greener Hospital Operating Rooms. Environmental Health Perspectives 120 (8):a306-307. doi:https://doi.org/10.1289/ehp.120-a306a

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sherman J, Le C, Lamers V, Eckelman M (2012) Life cycle greenhouse gas emissions of anesthetic drugs. Anesthesia and analgesia 114 (5):1086-1090. doi:https://doi.org/10.1213/ANE.0b013e31824f6940

    Article  CAS  PubMed  Google Scholar 

  14. Ishizawa Y (2011) Special article: general anesthetic gases and the global environment. Anesthesia and analgesia 112 (1):213-217. doi:https://doi.org/10.1213/ANE.0b013e3181fe02c2

    Article  PubMed  Google Scholar 

  15. Sherman JD, Ryan S (2010) Ecological Responsibility in Anesthesia Practice 48 (3):139-151. doi:https://doi.org/10.1097/AIA.0b013e3181ea7587

    Article  Google Scholar 

  16. Ryan S, Sherman J (2012) Sustainable Anesthesia. 114 (5):921-923. doi:https://doi.org/10.1213/ANE.0b013e31824fcea6

    Article  Google Scholar 

  17. Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Science of the Total Environment 429:123-155

    Article  CAS  Google Scholar 

  18. Azuma T, Nakada N, Yamashita N, Tanaka H (2015) Prediction, risk and control of anti-influenza drugs in the Yodo River Basin, Japan during seasonal and pandemic influenza using the transmission model for infectious disease. Science of The Total Environment 521:68-74

    Article  Google Scholar 

  19. Jain S, Kumar P, Vyas RK, Pandit P, Dalai AK (2013) Occurrence and removal of antiviral drugs in environment: A review. Water, Air, & Soil Pollution 224 (2):1-19

    Article  CAS  Google Scholar 

  20. Venkatesan AK, Halden RU (2014) Wastewater treatment plants as chemical observatories to forecast ecological and human health risks of manmade chemicals. Scientific reports 4

  21. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999- 2000: a national reconnaissance. Environmental science & technology 36 (6):1202

    Article  CAS  Google Scholar 

  22. Furlong ET, Batt AL, Glassmeyer ST, Noriega MC, Kolpin DW, Mash H, Schenck KM (2017) Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States: Pharmaceuticals. Science of the Total Environment 579:1629-1642

    Article  CAS  Google Scholar 

  23. Jickling K (2018) Muddied Waters: No Clear Solutions for Burlington's Wastewater Problem. Seven Days

  24. DEC V (2018) WWTF Facility Information.

  25. Mankes RF (2012) Propofol wastage in anesthesia. Anesthesia and analgesia 114 (5):1091-1092. doi:https://doi.org/10.1213/ANE.0b013e31824ea491

    Article  CAS  PubMed  Google Scholar 

  26. Rein MF, Westervelt FB, Sande MA (1973) Pharmacodynamics of cefazolin in the presence of normal and impaired renal function. Antimicrobial agents and chemotherapy 4 (3):366-371

    Article  CAS  Google Scholar 

  27. Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Analytical and bioanalytical chemistry 399 (1):251-275. doi:https://doi.org/10.1007/s00216-010-4300-9

    Article  CAS  PubMed  Google Scholar 

  28. Pfizer Global Environment HaSO (2016) Safety Data Sheet: Cefazolin for Injection (Hospira, Inc.).

  29. Eguchi K, Nagase H, Ozawa M, Endoh YS, Goto K, Hirata K, Miyamoto K, Yoshimura H (2004) Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57 (11):1733-1738. doi:https://doi.org/10.1016/j.chemosphere.2004.07.017

    Article  CAS  PubMed  Google Scholar 

  30. Ribeiro AR, Sures B, Schmidt TC (2018) Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. Environmental pollution (Barking, Essex : 1987) 241:1153-1166. doi:https://doi.org/10.1016/j.envpol.2018.06.040

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Meng J, Li Y, Hu C (2010) Investigation of the toxic functional group of cephalosporins by zebrafish embryo toxicity test. Archiv der Pharmazie 343 (10):553-560. doi:https://doi.org/10.1002/ardp.201000005

    Article  CAS  PubMed  Google Scholar 

  32. Li B, Zhang T (2013) Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination. Water Research 47 (9):2970-2982. doi:https://doi.org/10.1016/j.watres.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  33. Gordon DM, S. M. (2018) Disposal and Treatment of Controlled Substances from the O.R. ASA Monitor 82:18-21

    Google Scholar 

  34. Hiraoka H, Yamamoto K, Miyoshi S, Morita T, Nakamura K, Kadoi Y, Kunimoto F, Horiuchi R (2005) Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain. British journal of clinical pharmacology 60 (2):176-182. doi:https://doi.org/10.1111/j.1365-2125.2005.02393.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Favetta P, Degoute CS, Perdrix JP, Dufresne C, Boulieu R, Guitton J (2002) Propofol metabolites in man following propofol induction and maintenance. British Journal of Anaesthesia 88 (5):653-658. doi:https://doi.org/10.1093/bja/88.5.653

    Article  CAS  PubMed  Google Scholar 

  36. Mullot JU, Karolak S, Fontova A, Levi Y (2010) Modeling of hospital wastewater pollution by pharmaceuticals: first results of Mediflux study carried out in three French hospitals. Water Science and Technology 62 (12):2912-2919. doi:https://doi.org/10.2166/wst.2010.986

    Article  CAS  PubMed  Google Scholar 

  37. Falås P, Andersen HR, Ledin A, Jansen JlC (2012) Occurrence and reduction of pharmaceuticals in the water phase at Swedish wastewater treatment plants. Water Science and Technology 66 (4):783-791. doi:https://doi.org/10.2166/wst.2012.243

    Article  CAS  PubMed  Google Scholar 

  38. AstraZeneca (2017) Environmental Risk Assessment Data: Propofol.

  39. Mazaleuskaya LL, Sangkuhl K, Thorn CF, FitzGerald GA, Altman RB, Klein TE (2015) PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenetics and genomics 25 (8):416-426. doi:https://doi.org/10.1097/fpc.0000000000000150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nunes B, Antunes SC, Santos J, Martins L, Castro BB (2014) Toxic potential of paracetamol to freshwater organisms: A headache to environmental regulators? Ecotoxicology and Environmental Safety 107:178-185. doi:https://doi.org/10.1016/j.ecoenv.2014.05.027

  41. Kim Y, Choi K, Jung J, Park S, Kim P-G, Park J (2007) Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environment International 33 (3):370-375. doi:https://doi.org/10.1016/j.envint.2006.11.017

  42. Damasceno de Oliveira LL, Nunes B, Antunes SC, Campitelli-Ramos R, Rocha O (2018) Acute and Chronic Effects of Three Pharmaceutical Drugs on the Tropical Freshwater Cladoceran Ceriodaphnia silvestrii. Water, Air, & Soil Pollution 229 (4):116. doi:https://doi.org/10.1007/s11270-018-3765-6

  43. Antunes SC, Freitas R, Figueira E, Gonçalves F, Nunes B (2013) Biochemical effects of acetaminophen in aquatic species: edible clams Venerupis decussata and Venerupis philippinarum. Environmental Science and Pollution Research 20 (9):6658-6666. doi:https://doi.org/10.1007/s11356-013-1784-9

    Article  CAS  PubMed  Google Scholar 

  44. de Voogt P, Janex-Habibi ML, Sacher F, Puijker L, Mons M (2009) Development of a common priority list of pharmaceuticals relevant for the water cycle. Water science and technology : a journal of the International Association on Water Pollution Research 59 (1):39-46. doi:https://doi.org/10.2166/wst.2009.764

    Article  CAS  Google Scholar 

  45. de Oliveira LLD, Antunes SC, Gonçalves F, Rocha O, Nunes B (2016) Acute and chronic ecotoxicological effects of four pharmaceuticals drugs on cladoceran Daphnia magna. Drug & Chemical Toxicology 39 (1):13-21. doi:https://doi.org/10.3109/01480545.2015.1029048

    Article  CAS  Google Scholar 

  46. Guiloski IC, Ribas JLC, Piancini LDS, Dagostim AC, Cirio SM, Fávaro LF, Boschen SL, Cestari MM, da Cunha C, Silva de Assis HC (2017) Paracetamol causes endocrine disruption and hepatotoxicity in male fish Rhamdia quelen after subchronic exposure. Environmental Toxicology and Pharmacology 53:111-120. doi:https://doi.org/10.1016/j.etap.2017.05.005

  47. Wu J-P, Li M-H (2015) Inhibitory effects of pain relief drugs on neurological enzymes: Implications on their potential neurotoxicity to aquatic animals. Environmental Toxicology and Pharmacology 39 (2):898-905. doi:https://doi.org/10.1016/j.etap.2015.02.022

  48. Daughton CG, Ruhoy IS (2008) The afterlife of drugs and the role of pharmEcovigilance. Drug safety 31 (12):1069-1082. doi:https://doi.org/10.2165/0002018-200831120-00004

    Article  CAS  PubMed  Google Scholar 

  49. Daughton CG (2003) Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. I. Rationale for and avenues toward a green pharmacy. Environmental Health Perspectives 111 (5):757

    Article  CAS  Google Scholar 

  50. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives 107 Suppl 6:907-938

    Article  CAS  Google Scholar 

  51. Ali AMM, Kallenborn R, Sydnes LK, Rønning HT, Alarif WM, Al-Lihaibi S (2017) Photolysis of pharmaceuticals and personal care products in the marine environment under simulated sunlight conditions: irradiation and identification. Environmental Science and Pollution Research 24 (17):14657-14668. doi:https://doi.org/10.1007/s11356-017-8930-8

    Article  CAS  PubMed  Google Scholar 

  52. Lin AY, Lin CF, Tsai YT, Lin HH, Chen J, Wang XH, Yu TH (2010) Fate of selected pharmaceuticals and personal care products after secondary wastewater treatment processes in Taiwan. Water science and technology : a journal of the International Association on Water Pollution Research 62 (10):2450-2458. doi:https://doi.org/10.2166/wst.2010.476

    Article  CAS  Google Scholar 

  53. Radjenovic J, Petrovic M, Barceló D (2007) Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Analytical and bioanalytical chemistry 387 (4):1365-1377. doi:https://doi.org/10.1007/s00216-006-0883-6

    Article  CAS  PubMed  Google Scholar 

  54. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. The Science of the total environment 473-474:619-641. doi:https://doi.org/10.1016/j.scitotenv.2013.12.065

    Article  CAS  PubMed  Google Scholar 

  55. Merck Sharp & Dohme Corp. asoMC, Inc. (2015) Highlights of Prescribing Information: Bridion (sugammadex) Injection, for intravenous use.

  56. Tsai MH, Balla A, Tharp WG (2018) Intraoperative Considerations for Transgender Patients. Anesthesia and analgesia doi:https://doi.org/10.1213/ane.0000000000003814

  57. Collinsworth KA, Kalman SM, Harrison DC (1974) The clinical pharmacology of lidocaine as an antiarrhythymic drug. Circulation 50 (6):1217-1230

    Article  CAS  Google Scholar 

  58. Rua-Gomez PC, Puttmann W (2012) Occurrence and removal of lidocaine, tramadol, venlafaxine, and their metabolites in German wastewater treatment plants. Environmental science and pollution research international 19 (3):689-699. doi:https://doi.org/10.1007/s11356-011-0614-1

    Article  CAS  PubMed  Google Scholar 

  59. Rua-Gomez PC, Puttmann W (2012) Impact of wastewater treatment plant discharge of lidocaine, tramadol, venlafaxine and their metabolites on the quality of surface waters and groundwater. Journal of environmental monitoring : JEM 14 (5):1391-1399. doi:https://doi.org/10.1039/c2em10950f

    Article  CAS  PubMed  Google Scholar 

  60. AstraZeneca (2017) Environmental Risk Assessment Data: Lidocaine.

  61. Daughton CG, Ruhoy IS (2009) Environmental Footprint of Pharmaceuticals: The Significance of Factors Beyond Direct Excretion to Sewers. Environ Toxicol Chem 28 (12):2495-2521

    Article  CAS  Google Scholar 

  62. Daughton CG, Ruhoy IS (2008) The Afterlife of Drugs and the Role of PharmEcovigilance. Drug Safety 31 (12):1069-1082. doi: https://doi.org/10.2165/0002018-200831120-00004

    Article  CAS  PubMed  Google Scholar 

  63. Daughton CG (2002) Environmental stewardship and drugs as pollutants. The Lancet 360 (9339):1035-1036. doi:https://doi.org/10.1016/S0140-6736(02)11176-7

    Article  Google Scholar 

Download references

Funding

Marc Kostrubiak received $1500 received from the Larner College of Medicine Office of Medical Student Education and $1500 matched by the University of Vermont Department of Anesthesiology for a medical student summer research fellowship from June to August 2018. All UVM first year medical students are eligible for the research fellowship and the application required a two-stage review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell H. Tsai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostrubiak, M., Vatovec, C.M., Dupigny-Giroux, LA. et al. Water Pollution and Environmental Concerns in Anesthesiology. J Med Syst 44, 169 (2020). https://doi.org/10.1007/s10916-020-01634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-020-01634-2

Keywords

Navigation