Skip to main content
Log in

Using OPC and HL7 Standards to Incorporate an Industrial Big Data Historian in a Health IT Environment

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Health Level Seven (HL7) is one of the standards most used to centralize data from different vital sign monitoring systems. This solution significantly limits the data available for historical analysis, because it typically uses databases that are not effective in storing large volumes of data. In industry, a specific Big Data Historian, known as a Process Information Management System (PIMS), solves this problem. This work proposes the same solution to overcome the restriction on storing vital sign data. The PIMS needs a compatible communication standard to allow storing, and the one most commonly used is the OLE for Process Control (OPC). This paper presents a HL7-OPC Server that permits communication between vital sign monitoring systems with PIMS, thus allowing the storage of long historical series of vital signs. In addition, it carries out a review about local and cloud-based Big Medical Data researches, followed by an analysis of the PIMS in a Health IT Environment. Then it shows the architecture of HL7 and OPC Standards. Finally, it shows the HL7-OPC Server and a sequence of tests that proved its full operation and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. OLE - Object Linking Embedding

  2. http://industrial.softing.com

References

  1. Zaharia, V. D., and Dragan, F., Monitoring system for a medical facility using the OPC platform. In: Vlad, S., Ciupa, R. V. (Eds), International Conference on Advancements of Medicine and Health Care Through Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, 44–47.

    Chapter  Google Scholar 

  2. Hadzic, M., Dillon, T., and Chang, E., Use of digital ecosystem and ontology Technology for Standardization of medical records. In: 2007 Inaug. IEEE-IES Digit. EcoSyst. Technol. Conf. IEEE. 595–601, 2007.

  3. Christ, R. E. R., Figueredo, M. V. M., Bassani, T., Dias J da, S., and Nievola, J. C., Sistema de Monitoração Remota de Pacientes em Tempo-Real Através da Intranet do Hospital. In: Congresso Brasileiro de Informática em Saúde. Ribeirão Preto. 2004.

  4. Namli, T., Aluc, G., and Dogac, A., An interoperability test framework for HL7-based systems. IEEE Trans. Inf. Technol. Biomed. 13:389–399, 2009. https://doi.org/10.1109/TITB.2009.2016086.

    Article  PubMed  Google Scholar 

  5. Sáez, C., Bresó, A., Vicente, J., Robles, M., and García-Gómez, J. M., An HL7-CDA wrapper for facilitating semantic interoperability to rule-based clinical decision support systems. Comput. Methods Prog. Biomed. 109:239–249, 2013. https://doi.org/10.1016/j.cmpb.2012.10.003.

    Article  Google Scholar 

  6. Fras, A., and Dang, T., Improving industrial application’s performances with an historian. IEEE Int. Conf. Indust. Technol.. IEEE. 718–721, 2004.

  7. Pattle, R., and Ramisch J., OPC the de facto standard for real time communication. In: Proceedings of 5th international workshop on parallel and distributed real-time systems and 3rd workshop on object-oriented real-time systems. IEEE Comput. Soc. 289–294, 1997.

  8. Shimanuki, Y., OLE for process control (OPC) for new industrial automation systems. In: IEEE SMC’99 conference proceedings. 1999 IEEE international conference on systems, man, and cybernetics (cat. No.99CH37028). IEEE, 1048–1050. 1999.

  9. Gartner , Big Data. https://www.gartner.com/it-glossary/big-data. Accessed 26 Apr 2018. 2018.

  10. Goli-Malekabadi, Z., Sargolzaei-Javan, M., and Akbari, M. K., An effective model for store and retrieve big health data in cloud computing. Comput. Methods Prog. Biomed. 132:75–82, 2016. https://doi.org/10.1016/j.cmpb.2016.04.016.

    Article  Google Scholar 

  11. Gandomi, A., and Haider, M., Beyond the hype: big data concepts, methods, and analytics. Int J Inf Manage 35:137–144, 2015. https://doi.org/10.1016/J.IJINFOMGT.2014.10.007.

    Article  Google Scholar 

  12. Brennan, P. F., and Bakken, S., Nursing needs big data and big data needs nursing. J. Nurs. Scholarsh 47:477–484, 2015. https://doi.org/10.1111/jnu.12159.

    Article  PubMed  Google Scholar 

  13. Lin, W., Dou, W., Zhou, Z., and Liu, C., A cloud-based framework for home-diagnosis service over big medical data. J. Syst. Softw. 102:192–206, 2015. https://doi.org/10.1016/j.jss.2014.05.068.

    Article  Google Scholar 

  14. Welch, J., Kanter, B., Skora, B., McCombie, S., Henry, I., McCombie, D., Kennedy, R., and Soller, B., Multi-parameter vital sign database to assist in alarm optimization for general care units. J. Clin. Monit. Comput. 30. doi: https://doi.org/10.1007/s10877-015-9790-8. 2016.

  15. Bleyer, A. J., Vidya, S., Russell, G. B., Jones, C. M., Sujata, L., Daeihagh, P., and Hire, D., Longitudinal analysis of one million vital signs in patients in an academic medical center. Resuscitation 82:1387–1392, 2011. https://doi.org/10.1016/j.resuscitation.2011.06.033.

    Article  PubMed  Google Scholar 

  16. Liu, D., Görges, M., and Jenkins, S. A., University of Queensland Vital signs dataset. Anesth. Analg. 114:584–589, 2012. https://doi.org/10.1213/ANE.0b013e318241f7c0.

    Article  PubMed  CAS  Google Scholar 

  17. Johnson, A. E. W., Pollard, T. J., Shen, L., Lehman, L.-W. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Anthony Celi, L., and Mark, R. G., MIMIC-III, a freely accessible critical care database. Sci. Data 3:160035, 2016. https://doi.org/10.1038/sdata.2016.35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E., PhysioBank, PhysioToolkit, and PhysioNet : Components of a new research resource for complex physiologic signals. Circulation 101:e215–e220, 2000. https://doi.org/10.1161/01.CIR.101.23.e215.

    Article  PubMed  CAS  Google Scholar 

  19. Barr, D. C., The use of a data historian to extend plant life. In: International conference on life Management of Power Plants. IET, Edinburgh, pp 35–39, 1994

  20. Guo, Z. X., Xie, X. Q., and Ni, Z. G., The application of OPC DA in factory data acquisition. IEEE International conference on computer science and automation engineering (CSAE). IEEE, Zhangjiajie, China. 209–212, 2012.

  21. Miranda, J., Cabral, J., Banerjee, S., Grossmann, D., Pedersen, C. F., and Wagner, S. R., Analysis of OPC unified architecture for healthcare applications. In: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 1–4, 2017.

  22. Zheng, L., and Nakagawa, H., OPC (OLE for process control) specification and its developments. In: Proceedings of the 41st SICE annual conference. SICE 2002. Soc. Instrument & Control Eng. (SICE), 917–920, 2002.

  23. OPC Foundation, OPC data access custom interface standard version 3.0. 2003.

  24. Mahnke, W., Leitner, S.-H., and Damm, M., OPC Unified Architecture. Berlim: Springer-Verlag Berlin Heidelberg, 2009.

    Book  Google Scholar 

  25. Al-Enazi, T., and El-Masri, S., HL7 engine module for healthcare information systems. J. Med Syst 37:9986, 2013. https://doi.org/10.1007/s10916-013-9986-8.

    Article  PubMed  Google Scholar 

  26. Slavov, V., Rao, P., Paturi, S., Swami, T. K., Barnes, M., Rao, D., and Palvai, R., A new tool for sharing and querying of clinical documents modeled using HL7 version 3 standard. Comput Methods Programs Biomed 112:529–552, 2013. https://doi.org/10.1016/j.cmpb.2013.07.002.

    Article  PubMed  Google Scholar 

  27. Martínez-García, A., García-García, J. A., Escalona, M. J., and Parra-Calderón, C. L., Working with the J. Biomed. Inform.HL7 metamodel in a model driven engineering context. 57:415–424, 2015. https://doi.org/10.1016/j.jbi.2015.09.001.

  28. Fonseca, T., Ribeiro, C., and Granja, C., Vital signs in intensive care: Automatic acquisition and consolidation into electronic patient records. J. Med. Syst. 33:47–57, 2009. https://doi.org/10.1007/s10916-008-9163-7.

    Article  PubMed  Google Scholar 

  29. Hosseini, M., Jones, J., Faiola, A., Vreeman, D. J., Wu, H., and Dixon, B. E., Reconciling disparate information in continuity of care documents: Piloting a system to consolidate structured clinical documents. J. Biomed. Inform. 74:123–129, 2017. https://doi.org/10.1016/j.jbi.2017.09.001.

    Article  PubMed  Google Scholar 

  30. Health Level Seven International, HL7 Messaging Standard version 2.7. Estados Unidos. 2011.

  31. Bender, D., and Sartipi, K., HL7 FHIR: An agile and RESTful approach to healthcare information exchange. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems. IEEE. 326–331. 2013.

  32. Health Level Seven International, HL7 Version 2 Product Suite. http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185. Accessed 1 May 2018. 2018.

  33. Kim, W., Lim, S., Ahn, J., Nah, J., and Kim, N., Integration of IEEE 1451 and HL7 exchanging information for patients’ sensor data. J. Med. Syst. 34:1033–1041, 2010. https://doi.org/10.1007/s10916-009-9322-5.

    Article  PubMed  Google Scholar 

  34. Abdulnabi, M., Al-Haiqi, A., Kiah, M. L. M., Zaidan, A. A., Zaidan, B. B., and Hussain, M., A distributed framework for health information exchange using smartphone technologies. J. Biomed. Inform. 69:230–250, 2017. https://doi.org/10.1016/j.jbi.2017.04.013.

    Article  PubMed  Google Scholar 

  35. Lu, X., Gu, Y., Yang, L., Jia, W., and Wang, L., Research and implementation of transmitting and interchanging medical information based on HL7. In: The 2nd International Conference on Information Science and Engineering. IEEE, Hangzhou, China. 457–460, 2010.

  36. Benson, T., Principles of Health Interoperability HL7 and SNOMED. New York: Springer London Dordrecht Heidelberg, 2010.

    Book  Google Scholar 

  37. Sá Barretto, S. T., Cavalcante, C. A. M. T., Pacheco L de, A., Ferreira, A. M. S., and Nascimento, R. S., Real time updating methodology for mathematical. In: 20th international congress of mechanical engineering. Gramado. 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Freire Cruz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, M.F., Cavalcante, C.A.M.T. & Sá Barretto, S.T. Using OPC and HL7 Standards to Incorporate an Industrial Big Data Historian in a Health IT Environment. J Med Syst 42, 122 (2018). https://doi.org/10.1007/s10916-018-0979-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-0979-5

Keywords

Navigation