Skip to main content

Advertisement

Log in

Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This paper presents Fuzzy-PID (FPID) control scheme for a blood glucose control of type 1 diabetic subjects. A new metaheuristic Cuckoo Search Algorithm (CSA) is utilized to optimize the gains of FPID controller. CSA provides fast convergence and is capable of handling global optimization of continuous nonlinear systems. The proposed controller is an amalgamation of fuzzy logic and optimization which may provide an efficient solution for complex problems like blood glucose control. The task is to maintain normal glucose levels in the shortest possible time with minimum insulin dose. The glucose control is achieved by tuning the PID (Proportional Integral Derivative) and FPID controller with the help of Genetic Algorithm and CSA for comparative analysis. The designed controllers are tested on Bergman minimal model to control the blood glucose level in the facets of parameter uncertainties, meal disturbances and sensor noise. The results reveal that the performance of CSA-FPID controller is superior as compared to other designed controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lunzea, K., Singhb, T., Waltera, M., Brendelc, M.D., and Leonhardta, S., Blood glucose control algorithms for type 1 diabetic patients: A methodological review. Biomed. Signal Process. Control. 8:107–119, 2013.

    Article  Google Scholar 

  2. Yadav, J., Rani, A., Singh, V., and Bhaskar, M.M., Prospects and limitations of non-invasive blood glucose monitoring using near infrared spectroscopy. Biomed. Signal Process. Control. 18:214–227, 2015.

    Article  Google Scholar 

  3. Idf Diabetes Atlas Sixth Edition Poster Update (2015) http://www.diabetesatlas.org.

  4. Marchetti, G., Barolo, M., Jovanovic, L., Zisser, H., and Seborg, D.E., A feedforward–feedback glucose control strategy for type-1 diabetes mellitus. J. Process Control. 18:149–162, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ali, H.I., Design of PSO based robust blood glucose control in diabetic patients, Int J. Comput Commun. 14:1–9, 2014.

    Google Scholar 

  6. Kadish, A.H., Automation control of blood sugar. I. A, servo mechanism for glucose monitoring and control. Am J Med Electron. 3:82–86, 1964.

    CAS  PubMed  Google Scholar 

  7. Bequette, B.W., Challenges and recent progress in the development of a closed-loop artificial pancreas. Annu Rev Control. 36(2):255–266, 2012. doi:10.1016/j.arcontrol.2012.09.007.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khooban, M.H., Abadi, D.N.M., Alfi, A., and Siahi, M., Swarm optimization tuned Mamdani fuzzy controller for diabetes delayed model. Turk J Elec Eng & Comp Sci. 21:2110–2126, 2013.

    Article  Google Scholar 

  9. Lynch, S.M., and Bequette, B.W., Model predictive control of blood glucose in type I diabetics using subcutaneous glucose measurements. Proc. of the Amer. Control Conf., Anchorage, Alaska:4039–4043, 2002.

  10. Abadi, D.N.M., Khabob, M.H., Alfi, A., and Siahi, M., Design of Optimal Self-Regulation Mamdani-Type Fuzzy Inference Controller for type I diabetes mellitus. Arab J Sci Eng. 30:977–986, 2014.

    Article  Google Scholar 

  11. Steil, G., Rebrin, K., and Mastrototaro, J.J., Metabolic modelling and the closed-loop insulin delivery problem. Diabetes Res Clin Pr. 74:183–186, 2006.

    Article  CAS  Google Scholar 

  12. Velzquez, E.R., Femat, R., and Campos-Delgado, D.U., Blood glucose control for type I diabetes mellitus: A robust tracking H1 problem. Contr. Eng. Pract. 12(9):1179–1195, 2004.

    Article  Google Scholar 

  13. Yasini, S., Karimpour, A., Bagher, M., and Sistani, N., Knowledge-based closed-loop control of blood glucose concentration in diabetic patients and comparison with H∞ control technique. IETE J Res. 58(4):328–336, 2012.

    Article  Google Scholar 

  14. Li, W., Design of a hybrid fuzzy logic proportional plus conventional integral derivative controller. IEEE Trans. Fuzzy Syst. 6(4):449–463, 1998.

    Article  Google Scholar 

  15. Kamath, S., George, V.I., and Vidyasagar, S., Simulation Study on Type I Diabetic Patient. IETE J Res. 55:287–193, 2009. doi:10.4103/0377–2063.59168.

    Article  Google Scholar 

  16. Bergman, R.N., Phillips, L.S., and Cobelli, C., Physiological evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and P-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Invest. 68:1456–1467, 1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liang, C.C., and Tsai, H.W., Modeling the physiological glucose–insulin system on normal and diabetic subjects. Comput Meth Prog Bio. 97(2):130–140, 2010.

    Article  Google Scholar 

  18. Bergman, R.N., Finegood, D.T., and Ader, M., Assessment of insulin sensitivity in vivo. Endocrine Rev. 6:45–86, 1985.

    Article  CAS  Google Scholar 

  19. Riel, N.V., Minimal models for glucose and insulin kinetics. Eindhoven University of Technology, In Technique Report, 2004.

    Google Scholar 

  20. Roy, A., and Parker, R.S., Dynamic modeling of exercise effects on plasma glucose and insulin levels. J. Diabetes Sci. Technol. 1(3):338–347, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kaveh, P., and Shtessel, Y.B., Blood glucose regulation using higher order sliding mode control,". Int J Robust Nonlin. 18:557–569, 2007.

    Article  Google Scholar 

  22. Andersen K. E., Malene H. (2003) A Bayesian Approach to Bergman’s Minimal Model, in: C.M. Bishop, B.J. Frey (Eds.), Proceedings of the Ninth International Workshop on Artificial Intelligence.

  23. Ibbini, M.S., and Masadeh, M.A., A fuzzy logic based closed loop control system for blood glucose level regulation in diabetics. J Med Eng Technol. 29(2):64–69, 2005.

    Article  CAS  PubMed  Google Scholar 

  24. Ibbini, M., A PI-fuzzy logic controller for the regulation of blood glucose level in diabetic patients. J Med Eng Technol. 30(2):83–92, 2006.

    Article  CAS  PubMed  Google Scholar 

  25. Sasi, A.Y.B., and Elmalki, M.A., A fuzzy controller for blood glucose-insulin system. Journal of Signal and Information Processing. 4:111–117, 2013. doi:10.4236/jsip.2013.42015.

    Article  Google Scholar 

  26. Chen, I., Cao, K., Sun, Y., Xiao, Y., and Su, X., Continuous drug infusion for diabetes therapy: a closed-loop control system design. EURASIP J. Wirel. Commun. Netw. 44:495185, 2008. doi:10.1155/2008/495185.

    Google Scholar 

  27. Li, C., and Hu, R., Fuzzy-PID Control for the Regulation of Blood Glucose in Diabetes. IEEE Global Congress on Intelligent Systems:170–174, 2009. doi:10.1109/GCIS.2009.280.

  28. Sharma, R., Rana, K.P.S., and Kumar, V., Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst Appl. 41:4274–4289, 2014.

    Article  Google Scholar 

  29. Fereydouneyan, F., Zare, A., and Mehrshad, N., Using a fuzzy controller optimized by a genetic algorithm to regulate blood glucose level in type 1 diabetes. J Med Eng Technol. 35(5):224–230, 2011.

    Article  CAS  PubMed  Google Scholar 

  30. Beyki K. and Javan M D, Kambiz S G., Neshati M. M. (2010) An Intelligent Approach for Optimal Regulation of Blood Glucose Level, Proceedings of the 17th Iranian Conference of Biomedical Engineering (ICBME2010), 1–5.

  31. X.-S., Y., and S., D., Engineering optimization by cuckoo search. Journal of Mathematical Modelling and Numerical Optimization. 1(4):330–343, 2010. doi:10.1504/IJMMNO.2010.03543.

    Article  Google Scholar 

  32. Tuba, M., Subotic, M., and Stanarevic, N., Modified cuckoo search algorithm using unconstrained optimization problems. WSEAS Transactions on Systems. 2(11):62–74, 2012.

    Google Scholar 

  33. Rajabioun, R., Cuckoo optimization algorithm. Applied Soft Computing. 11:5508–5518, 2011.

    Article  Google Scholar 

  34. Gandomi, A.H., Yang, X.-S., and Alavi, A.H., Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput. 29:17–35, 2013.

    Article  Google Scholar 

  35. Yildiz, A.R., Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Tech. 64(1):55–61, 2013.

    Article  Google Scholar 

  36. Ahmed, J., and Salam, Z., A maximum power point tracking (MPPT) for PV system using cuckoo search with partial shading capability. Appl Energy. 119:118–130, 2014.

    Article  Google Scholar 

  37. Balochian, S., and Ebrahimi, E., Parameter Optimization via Cuckoo Optimization Algorithm of Fuzzy Controller for Liquid Level Control. Journal of Engineering, Article ID. 982354 , 2013. doi:10.1155/2013/982354.7 pages

  38. Li, H.X., L., Z., Cai, K.Y., and Chen, G., An improved robust fuzzy-PID controller with optimal fuzzy reasoning. IEEE Trans Syst Man Cybern B Cybern. 35(6):1283–1294, 2005.

    Article  PubMed  Google Scholar 

  39. Noshadi A., Shi J., Lee W., Kalam A. (2014) PID-type fuzzy logic controller for active magnetic bearing system, IECON 2014 - 40th Annual Conference of the IEEE, 241–247.

  40. Zhao J., Bose B.K. (2002) Evaluation of membership functions for fuzzy logic controlled induction motor drive, IECON 02 [Industrial Electronics Society, IEEE 2002 28th Annual Conference of the] 229–234.

  41. Teuschl, Y., Taborsky, B., and Taborsky, M., How do cuckoos find their hosts? the role of habitat imprinting. Anim Behav56,. 56:1425–1433, 1998.

    Article  Google Scholar 

  42. Bulatovic, R.R., Dordevic, S.R., and Dordevic, V.S., Cuckoo Search algorithm: A Metaheuristic Approach to Solving the Problem of Optimum Synthesis of a Sixbar Double Dwell Linkage. Mech Mach Theory. 61:1–13, 2013.

    Article  Google Scholar 

  43. Zhou Y. and Zheng H. (2013) A Novel Complex Valued Cuckoo Search Algorithm, Hindawi Publishing Corporation Scientific World J.,Article ID 597803:6 pages doi:10.1155/2013/597803

  44. Grant, P., A new approach to diabetic control: fuzzy logic and insulin pump technology. Med Eng Phys. 29:824–827, 2007.

    Article  PubMed  Google Scholar 

  45. Dua, P., Doyle, F.J., and Pistikopoulos, E.N., Multi-objective blood glucose control for type 1 diabetes. Med Biol Eng Comput. 47:343–352, 2009.

    Article  PubMed  Google Scholar 

  46. Parisa K. and Yuri S. (2006) Higher Order Sliding Mode Control for Blood Glucose Regulation, Proceedings of the International Workshop on Variable Structure Systems Alghero, Italy 11–16.

  47. Fisher, M.E., A Semi Closed-Loop Algorithm for Control of Blood Glucose Levels in Diabetics, IEEE Trans on Biomed. Eng. 38(1):57–61, 1991.

    CAS  Google Scholar 

  48. Turksoy, K., Samadi, S., Feng, J., Littlejohn, E., Quinn, L., and Cinar, A., Meal detection in patients with type 1 diabetes: a new module for the multivariable adaptive artificial pancreas control system. IEEE J. Biomed. Health Inform. 20(1):47–54, 2016.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Yadav.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, J., Rani, A. & Singh, V. Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients. J Med Syst 40, 254 (2016). https://doi.org/10.1007/s10916-016-0602-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0602-6

Keywords

Navigation