Skip to main content

Advertisement

Log in

Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique

  • Transactional Processing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. http://www.wiau.man.ac.uk/services/MIAS/MIASweb.html

  2. http://marathon.csee.usf.edu/Mammography/Database.html.

  3. American cancer society, cancer facts and figures. American Cancer Society, Atlanta, Ga, 2005-2015

  4. Cao, A., Song, Q., Yang, X., Robust information clustering incorporating spatial information for breast mass detection in digitized mammograms. Comput. Vis. Image Underst. 109(1):86–96, 2008.

    Article  Google Scholar 

  5. Chen, C., Liu, G., Wang, J., Sudlow, G., Shape-based automatic detection of pectoral muscle boundary in mammograms. J. Medical Biol. Eng. 35(3):315–322, 2015.

    Article  CAS  Google Scholar 

  6. Coifman, R.R., and Donoho, D.L., Translation-invariant de-noising: Springer, 1995.

  7. Donoho, D.L.: Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data. In: Proceedings of symposia in Applied Mathematics, volume 47, pages 173–205. Providence: American Mathematical Society (1993)

  8. Donoho, D.L., De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3):613–627, 1995.

    Article  Google Scholar 

  9. Fan, J., and Laine, A.F.: Contrast enhancement by multiscale and nonlinear operators (1996)

  10. Ferrari, R.J., Rangayyan, R.M., Leo Desautels, J.E., Borges, R.A., Frere, A.F., Automatic identification of the pectoral muscle in mammograms. IEEE Trans. Med. Imaging 23(2):232–245, 2004.

    Article  CAS  PubMed  Google Scholar 

  11. Ganesan, K., Acharya, U., Chua, C.K., Min, L.C., Abraham, K., Ng, K., Computer-aided breast cancer detection using mammograms: A review. IEEE Rev. Biomed. Eng. 6:77–98, 2013.

    Article  PubMed  Google Scholar 

  12. Gao, X., Wang, Y., Li, X., Tao, D., On combining morphological component analysis and concentric morphology model for mammographic mass detection. IEEE Trans. Inf. Technol. Biomed. 14(2):266–273, 2010.

    Article  PubMed  Google Scholar 

  13. Gorgel, P., Sertbas, A., Ucan, O.N., A wavelet-based mammographic image denoising and enhancement with homomorphic filtering. J. Med. Syst. 34(6):993–1002, 2010.

    Article  PubMed  Google Scholar 

  14. Hsu, W.-Y., Improved watershed transform for tumor segmentation: application to mammogram image compression. Expert syst. Appl. 39(4):3950–3955, 2012.

    Article  Google Scholar 

  15. Kai, H., Gao, X., Li, F., Detection of suspicious lesions by adaptive thresholding based on multiresolution analysis in mammograms. IEEE Trans. Instrum. Meas. 60(2):462–472, 2011.

    Article  Google Scholar 

  16. Yoshitaka, K., Mathematical morphology-based approach to the enhancement of morphological features in medical images. J. Clinical Bioinformatics 1(1):1–10, 2011.

    Article  Google Scholar 

  17. Kom, G., Tiedeu, A., Kom, M., Automated detection of masses in mammograms by local adaptive thresholding. Comput. Biol. Med. 37(1):37–48, 2007.

    Article  PubMed  Google Scholar 

  18. Li, L., Qian, W., Clarke, L.P., Clark, R.A., Thomas, J.A.: Improving mass detection by adaptive and multiscale processing in digitized mammograms. In: Medical Imaging ’99. International Society for Optics and Photonics, pp 490–498 (1999)

  19. Li, Y., Chen, H., Yang, Y., Cheng, L., Cao, L., A bilateral analysis scheme for false positive reduction in mammogram mass detection. Comput. Biol. Med. 57:84–95, 2015.

    Article  PubMed  Google Scholar 

  20. Majeed, T.F, Al-Jawad, N., Sellahewa, H., Breast border extraction and pectoral muscle removal in mlo mammogram images, 2013.

  21. Malek, A.A., Rahman, W.E.Z.W.A., Ibrahim, A., Mahmud, R., Yasiran, S.S., Jumaat, A.K., Region and boundary segmentation of microcalcifications using seed-based region growing and mathematical morphology. Procedia-Social Behavioral Scie. 8:634–639, 2010.

    Article  Google Scholar 

  22. Mallat, S., and Zhong, S., Characterization of signals from multiscale edges. IEEE Trans. Pattern Anal. Mach. Intell. 14(7):710–732, 1992.

    Article  Google Scholar 

  23. Mallet, S.G., A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7):674–693, 1989.

    Article  Google Scholar 

  24. Mazurowski, M.A., Lo, J.Y., Harrawood, B.P., Tourassi, G.D., Mutual information-based template matching scheme for detection of breast masses: From mammography to digital breast tomosynthesis. J. Biomed. Inform. 44(5):815–823 , 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mencattini, A., Salmeri, M., Lojacono, R., Frigerio, M., Caselli, F., Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE Trans. Instrum. Meas. 57(7):1422–1430 , 2008.

    Article  Google Scholar 

  26. Nagi, J., Abdul K.S., Nagi, F., Ahmed, S.K.: Automated breast profile segmentation for roi detection using digital mammograms. In: Biomedical Engineering and Sciences (IECBES), 2010 IEEE EMBS Conference on, pages 87–92. IEEE (2010)

  27. Petrick, N., Chan, H.-P., Wei, D., Sahiner, B., Helvie, M.A., Adler, D.D., Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification. Med. Phys. 23(10): 1685–1696, 1996.

    Article  CAS  PubMed  Google Scholar 

  28. Schalkoff, R.J., Digital image processing and computer vision. Vol. 286. New York: Wiley, 1989.

    Google Scholar 

  29. Shensa, M., The discrete wavelet transform: wedding the a trous and mallat algorithms. IEEE Trans. Signal Process. 40(10):2464–2482, 1992.

    Article  Google Scholar 

  30. Soille, P., Morphological image analysis: principles and applications: Springer Science & Business Media, 2013.

  31. Starck, J.-L., Fadili, J., Murtagh, F., The undecimated wavelet decomposition and its reconstruction. IEEE Trans. Image Process. 16(2):297–309, 2007.

    Article  PubMed  Google Scholar 

  32. Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., Ricketts, I., Stamatakis, E., Cerneaz, N.S., Kok, S., et al.: The mammographic image analysis society digital mammogram database. In: Exerpta Medica. International Congress Series, volume 1069, pages 375–378 (1994)

  33. Tai, S.-C., Chen, Z.-S., Tsai, W.-T., An automatic mass detection system in mammograms based on complex texture features. IEEE J. Bio. Health Inform. 18(2):618–627 , 2014.

    Article  Google Scholar 

  34. Tang, J.l., Rangayyan, R.M., Xu, J., Naqa, I.E., Yang, Y., Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans. Inf. Technol. Biomed. 13(2):236–251, 2009.

    Article  PubMed  Google Scholar 

  35. Yoon, J.H., and Yong Man, R.O., Enhancement of the contrast in mammographic images using the homomorphic filter method. IEICE Trans. Inform. Syst. 85(1):298–303, 2002.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Sushil Kachewar, Associate Professor, Dr. Sham, Assistant Professor and there team, Department of Radiodiagnosis and Imaging of Rural Medical College, Pravara Institute of Medical Science (PIMS), Loni (Deemed University), for providing the information about pectoral muscle, breast cancer and ground truth for MIAS and DDSM databases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Vikhe.

Additional information

This article is part of the Topical Collection on Transactional Processing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikhe, P.S., Thool, V.R. Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique. J Med Syst 40, 82 (2016). https://doi.org/10.1007/s10916-016-0435-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0435-3

Keywords

Navigation