Skip to main content

Advertisement

Log in

A Medical Decision Support System Based on Support Vector Machines and the Genetic Algorithm for the Evaluation of Fetal Well-Being

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

A new scheme was presented in this study for the evaluation of fetal well-being from the cardiotocogram (CTG) recordings using support vector machines (SVM) and the genetic algorithm (GA). CTG recordings consist of fetal heart rate (FHR) and the uterine contraction (UC) signals and are widely used by obstetricians for assessing fetal well-being. Features extracted from normal and pathological FHR and UC signals were used to construct an SVM based classifier. The GA was then used to find the optimal feature subset that maximizes the classification performance of the SVM based normal and pathological CTG classifier. An extensive clinical CTG data, classified by three expert obstetricians, was used to test the performance of the new scheme. It was demonstrated that the new scheme was able to predict the fetal state as normal or pathological with 99.3 % and 100 % accuracy, respectively. The results reveal that, the GA can be used to determine the critical features to be used in evaluating fetal well-being and consequently increase the classification performance. When compared to widely used ANN and ANFIS based methods, the proposed scheme performed considerably better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MacDonald, D., Grant, A., Sheridan-Pereira, M., Boylan, P., and Chalmers, I., The Dublin randomized controlled trial of intrapartum fetal heart rate monitoring. Am. J. Obstet. Gynecol. 152:524–539, 1985.

    Google Scholar 

  2. Goddard, R., Electronic fetal monitoring is not necessary for low risk labours. Brit. Med. J. 322:1436–1437, 2001.

    Article  Google Scholar 

  3. Rooth, G., Huch, A., and Huch, R., Guidelines for the use of fetal monitoring. Int. J. Gynaecol. Obstet. 25:159–167, 1987.

    Article  Google Scholar 

  4. Bernardes, J., Costa-Pereira, A., Ayres-de-Campos, D., van-Geijn, H. P., and Pereira-Leite, L., Evaluation of interobserver agreement of cardiotocograms. Int. J. Gynaecol. Obstet. 57:33–37, 1997.

    Article  Google Scholar 

  5. Palomaki, O., Luukkaala, T., Luoto, R., and Tuimala, R., Intrapartum cardiotocography - the dilemma of interpretational variation. J Perinat Med 34:298–302, 2006.

    Article  Google Scholar 

  6. Jongsma, H. W., and Nijhuis, J. G., Classification of fetal and neonatal heart rate patterns in relation to behavioural states. Eur. J. Obstet. Gynecol. Reprod. Biol. 21:293–299, 1986.

    Article  Google Scholar 

  7. Georgoulas, G., Stylios, C. D., Nokas, G., and Groumpos, P. P., Classification of fetal heart rate during labour using hidden Markov models. Proc IEEE Int Joint Conf. Neural Netw. 3:2471–2474, 2004.

    Google Scholar 

  8. Signorini, M. G., de-Angelis, A., Magenes, G., Sassi, R., Arduini, D., and Cerutti, S., Classification of fetal pathologies through fuzzy inference systems based on a multiparametric analysis of fetal heart rate. Comput. Cardiol. 27:435–438, 2000.

    Google Scholar 

  9. Georgoulas, G., and Stylios, C. D., Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines. IEEE Trans. Biomed. Eng. 53:875–884, 2006.

    Article  Google Scholar 

  10. Spilka, J., Chudacek, V., Koucky, M., Lhotska, L., Huptych, M., Janku, P., Georgoulas, G., and Stylios, C. D., Using nonlinear features for fetal heart rate classification. Biomed. Signal Process. Control 7:350–357, 2012.

    Article  Google Scholar 

  11. Georgoulas, G., Stylios, C. D., and Groumpos, P. P., Feature extraction and classification of fetal heart rate using wavelet analysis and support vector machine. Int. J. Artif. Intell. Tools 15:411–432, 2005.

    Article  Google Scholar 

  12. Vaisman, S., Salem, S. Y., Holcberg, G., and Geva, A. B., Passive fetal monitoring by adaptive wavelet denoising method. Comput. Biol. Med. 42:171–179, 2012.

    Article  Google Scholar 

  13. Cattani, C., Doubrovina, O., Rogosin, S., Voskresensky, S. L., and Zelianko, E., On the creation of a new diagnostic model for fetal well-being on the base of wavelet analysis of cardiotocograms. J. Med. Syst. 30:489–494, 2006.

    Article  Google Scholar 

  14. Magenes, G., Signorini, M. G., and Arduini, D., Classification of cardiotocographic records by neural networks. Proc. IEEE-INNS-ENNS Int. Joint Conf. Neural Netw. (IJCNN’00) 3:637–641, 2000.

    Google Scholar 

  15. Liszka-Hackzell, J. J., Categorization of fetal heart rate patterns using neural networks. J. Med. Syst. 25:269–276, 2001.

    Article  Google Scholar 

  16. Magenes, G., Signorini, M.G., Sassi, R., Arduini, D., Multiparametric analysis of fetal heart rate: comparison of neural and statistical classifiers. Proceedings of Medicon 2001, Pula, Croatia, 360–363, (2001).

  17. Ocak, H., and Ertunc, H. M., Prediction of fetal State from the cardiotocogram recordings using adaptive neuro-fuzzy inference systems. Neural Comput. Appl., 2012. doi:10.1007/s00521-012-1110-3.

  18. Shah, S., and Kusiak, A., Cancer gene search with data-mining and genetic algorithms. Comput. Biol. Med. 37:251–261, 2007.

    Article  Google Scholar 

  19. Hassan, R., Nath, B., and Kirley, M., A fusion model of HMM, ANN and GA for stock market forecasting. Expert Syst. Appl. 33:171–180, 2007.

    Article  Google Scholar 

  20. Yu, S. N., and Lee, M. Y., Bispectral analysis and genetic algorithm for congestive heart failure recognition based on heart rate variability. Comput. Biol. Med. 42:816–825, 2012.

    Article  Google Scholar 

  21. Elveren, E., and Yumusak, N., Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm. J. Med. Syst. 35:329–332, 2011.

    Article  Google Scholar 

  22. Kocer, S., and Canal, M. R., Classifying epilepsy diseases using artificial neural networks and genetic algorithm. J. Med. Syst. 35:489–498, 2011.

    Article  Google Scholar 

  23. Vapnik, V., and Cortes, C., Support vector networks. Mach. Learn. 20:273–297, 1989.

    Google Scholar 

  24. Ubeyli, E. D., Multiclass support vector machines for diagnosis of erythemato-squamous diseases. Expert Syst. Appl. 35:1733–1740, 2008.

    Article  Google Scholar 

  25. Sahin, D., Ubeyli, E. D., Ilbay, G., Sahin, M., and Yasar, A. B., Diagnosis of airway obstruction or restrictive spirometric patterns by multiclass support vector machines. J. Med. Syst. 34:967–973, 2010.

    Article  Google Scholar 

  26. Abibullaev, B., and An, J., Decision support algorithm for diagnosis of ADHD using electroencephalograms. J. Med. Syst. 36:2675–2688, 2012.

    Article  Google Scholar 

  27. Chen, H. L., Yang, B., Wang, G., Wang, S. J., Liu, J., and Liu, D. Y., Support vector machine based diagnostic system for breast cancer using swarm intelligence. J. Med. Syst. 36:2505–2519, 2012.

    Article  Google Scholar 

  28. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989

  29. Melanie, M., An Introduction to Genetic Algorithms. MIT Press, 1996.

  30. Holland, J., Genetic algorithms. Scientific American, 66–72, 1992.

  31. Frank, A., Asuncion, A., UCI Machine Learning Repository. [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science, 2000.

  32. Ayres-de-Campos, D., Bernardes, J., Garrido, A., Marques-de-Sa, J., and Pereira-Leite, L., SisPorto 2.0: a program for automated analysis of cardiotocograms. J. Matern-Fetal Med 5:311–318, 2000.

    Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Ocak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocak, H. A Medical Decision Support System Based on Support Vector Machines and the Genetic Algorithm for the Evaluation of Fetal Well-Being. J Med Syst 37, 9913 (2013). https://doi.org/10.1007/s10916-012-9913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-012-9913-4

Keywords

Navigation