Skip to main content

Advertisement

Log in

ASIC Design of a Digital Fuzzy System on Chip for Medical Diagnostic Applications

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The paper presents the ASIC design of a digital fuzzy logic circuit for medical diagnostic applications. The system on chip under consideration uses fuzzifier, memory and defuzzifier for fuzzifying the patient data, storing the membership function values and defuzzifying the membership function values to get the output decision. The proposed circuit uses triangular trapezoidal membership functions for fuzzification patients’ data. For minimizing the transistor count, the proposed circuit uses 3T XOR gates and 8T adders for its design. The entire work has been carried out using TSMC 0.35 µm CMOS process. Post layout TSPICE simulation of the whole circuit indicates a delay of 31.27 ns and the average power dissipation of the system on chip is 123.49 mW which indicates a less delay and less power dissipation than the comparable embedded systems reported earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kukar, M., Transductive reliability estimation in medical diagnosis. Artificial Intelligence in Medicine. 29:81–106, 2003.

    Article  Google Scholar 

  2. Technical Report of Technical Working Group on Telemedicine Standardization. Technical Report, Indian Medical Society, May 2003.

  3. Website of Rural Community Development Program, www.rcdpnepal.com/india/india_health_sector.php

  4. Held, C. M., and Roy, R. J., Multiple drug haemodynamic control by means of a supervisory fuzzy rule based adaptive control system: validation on a model. IEEE Transactions on Biomedical Engineering. 42:371–385, 1995.

    Article  Google Scholar 

  5. Huang, J. W., and Roy, R. J., Multiple-drug haemodynamic control using fuzzy decision theory. IEEE Transactions on Biomedical Engineering. 45:213–228, 1998.

    Article  Google Scholar 

  6. Linkens, D. A., Shieh, J. S., and Peacock, J. E., Hierarchical fuzzy modeling for monitoring depth of anesthesia. Fuzzy Sets and Systems. 79:43–57, 1996.

    Article  Google Scholar 

  7. Huang, J. W., Lu, Y. Y., Nayak, A., and Roy, R. J., Depth of anesthesia estimation and control. IEEE Transactions on Biomedical Engineering. 46:71–81, 1999.

    Article  Google Scholar 

  8. Lin, C. T., and Lee, C. S. G., Neural fuzzy systems: a neural-fuzzy synergism to intelligent systems. Prentice-Hall, Englewood Cliffs, 1996.

    Google Scholar 

  9. Yager, R. R., and Filev, D. P., Essentials of fuzzy modeling and control. Wiley, New York, 1994.

    Google Scholar 

  10. Zadeh, L. A., Fuzzy sets. Information and Control. 8:338–353, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  11. Togai, M., and Watanabe, H., Expert system on a chip: an engine for real time approximate reasoning. IEEE Expert Systems Magazine. 1:55–62, 1986.

    Google Scholar 

  12. Lim, M. H., and Takefuji, Y., Implementing fuzzy rule based systems on silicon chips. IEEE Expert Systems Magazine. 5 (1)31–45, 1990.

    Google Scholar 

  13. Zadeh, L. A., Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man and Cybernetics. 3 (1)28–44, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  14. Zadeh, L. A., Fuzzy logic, neural networks and soft computing. ACM Transactions on Computing. 37 (3)77–84, 1994.

    MathSciNet  Google Scholar 

  15. Surmann, H., and Ungering, A., Fuzzy rule based systems on general purpose processors. IEEE Micro. 15 (4)40–48, 1995.

    Article  Google Scholar 

  16. Watanabe, H., Symon, J. R., Detloff, W. D., and Yount, K. E., VLSI fuzzy chip and inference accelerator board system. Fuzzy logic for management of uncertainty. Wiley, New York, 1992.

    Google Scholar 

  17. Nakamura, K., Sakashita, N., Nitta, N., Shimomura, K., and Tokuda, T., Fuzzy inference and fuzzy inference processor. IEEE Micro. 13 (5)37–48, 1993.

    Article  Google Scholar 

  18. Manzoul, M. A., and Tayal, S., Systolic array for multivariable fuzzy control systems. International Journal of Systems and Cybernetics. 21 (1)27–42, 1990.

    Article  MATH  Google Scholar 

  19. Jaramillo-Botero, A., and Miyake, Y., A high speed parallel architecture for fuzzy inference control of multiple processes. Proceedings of IEEE 1994 World Congress on Computational Intelligence. 3:1765–1770, 1994.

    Google Scholar 

  20. Orsila, H., Kangas, T., Salminen, E., Hamalainen, T. D., and Hannikainen, M., Automated memory-aware application distribution for multi-processor system-on-chips. Journal of Systems Architecture. 53 (11)795–815, 2007.

    Article  Google Scholar 

  21. Aranguren, G., Barron, M., Arroyabe, J. L., and Garcia-Carreira, G., A pipeline fuzzy controller in FPGA. Proceedings of IEEE Conference on Fuzzy Systems. 2:635–640, 1997.

    Article  Google Scholar 

  22. Samoladas, V., and Petrou, L., Special purpose architectures for fuzzy logic controllers. Microprocessing and Microprogramming. 40 (4)275–289, 1994.

    Article  Google Scholar 

  23. de Salvador, L., and Gutierrez, J., A multilevel systolic approach for fuzzy inference hardware. IEEE Micro. 15 (5)61–71, 1995.

    Article  Google Scholar 

  24. Raychev, R., Mtibaa, A., and Abid, M., VHDL modeling of a fuzzy coprocessor architecture. Proceedings of International Conference on Computer Systems and Technologies, pp. I. 2.1–I. 2.6, 2005.

  25. Roy Chowdhury, S., and Saha, H., Development of an FPGA based smart embedded system for rural telediagnostic applications. IETE Technical Review. 23 (5)295–301, 2006.

    Google Scholar 

  26. Roy Chowdhury, S., Chakrabarti, D., and Saha, H., FPGA realization of a smart processing system for clinical diagnostic applications using pipelined datapath architectures. Microprocessors and Microsystems. 32 (2)107–120, 2008.

    Article  Google Scholar 

  27. Roy Chowdhury, S., and Saha, H., A high performance generalized fuzzy processor architecture and realization of its prototype on an FPGA. IEEE Micro. 28 (5)38–52, 2008.

    Article  Google Scholar 

  28. Roy Chowdhury, S., Chakrabarti, D., and Saha, H., Medical diagnosis using adaptive perceptive particle swarm optimization and its hardware realization using FPGA. Journal of Medical Systems, in press, 2008. doi:10.1007/s10916-008-9206-0.

  29. Roy Chowdhury, S., Banerjee, A., Roy, A., and Saha, H., A high speed 8 transistor full adder design using novel 3 transistor XOR gate. International Journal of Electronics, Circuits and Systems. 2 (4)217–223, 2008.

    Google Scholar 

  30. Weste, N., and Harris, D., CMOS VLSI design. Pearson, Upper Saddle River, 2007.

    Google Scholar 

  31. Tsividis, Y., Mixed analog–digital VLSI devices and technology, 1st edition. McGraw Hill, Singapore, 1996.

    Google Scholar 

  32. Morris Mano, M., Digital design, 2nd edition. Prentice Hall, New Delhi, 2000.

    Google Scholar 

  33. Lin, J. F., Hwang, Y. T., Sheu, M. H., and Ho, C. C., A novel high speed and energy efficient 10 transistor full adder design. IEEE Transactions on Circuits and Systems I: Regular Papers. 54 (5)1050–1059, 2007.

    Article  Google Scholar 

  34. Yurdakul, A., Multiplierless implementation of 2D FIR filters. Integration: The VLSI Journal. 38 (4)597–613, 2005.

    Article  Google Scholar 

  35. Prasad, K., and Parhi, K. K., Low power 4–2 and 5–2 compressors. Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers. 1:129–133, 2001.

    Google Scholar 

  36. Gu, J., and Chang, C., Ultra low voltage low power 4–2 compressor for high speed multiplications. Proceedings of IEEE International Symposium on Circuits and Systems. 5:321–324, 2003.

    Google Scholar 

  37. Lin, J. F., Hwang, Y. T., Sheu, M. H., and Ho, C. C., A novel high speed and energy efficient 10 transistor full adder design. IEEE Transactions Circuits Systems I: Regular Papers. 54 (5)1050–1059, 2007.

    Article  Google Scholar 

  38. Raychev, R., Mtibaa, A., and Abid, M., VHDL Modeling of a fuzzy coprocessor architecture. Proceedings of International Conference on Computer Systems and Technologies, pp. I. 2.1–I. 2.6, 2005.

  39. Orsila, H., Kangas, T., Salminen, E., Hamalainen, T. D., and Hannikainen, M., Automated memory-aware application distribution for multi-processor system-on-chips. Journal of Systems Architecture. 53 (11)795–815, 2007.

    Article  Google Scholar 

  40. Sherwani, N. A., Algorithms for physical VLSI design automation, 2nd edition. Kluwer, Boston, 2001.

    Google Scholar 

  41. Gibbs, A. L., and Braunwald, E., Primary cardiology. Saunders, Philadelphia, 1998.

    Google Scholar 

  42. Olona-Cabases, M., The probability of a correct diagnosis. In: Candell-Riera, J., and Ortega-Alcalde, D. (Eds.), Nuclear Cardiology in Everyday PracticeKluwer, Boston, pp. 348–357, 1994.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support lent by Ministry of Communications and Information Technology, Government of India for providing the necessary support to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiranmay Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy Chowdhury, S., Roy, A. & Saha, H. ASIC Design of a Digital Fuzzy System on Chip for Medical Diagnostic Applications. J Med Syst 35, 221–235 (2011). https://doi.org/10.1007/s10916-009-9359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9359-5

Keywords

Navigation