Skip to main content

Advertisement

Log in

Identification of Cataract and Post-cataract Surgery Optical Images Using Artificial Intelligence Techniques

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Human eyes are most sophisticated organ, with perfect and interrelated subsystems such as retina, pupil, iris, cornea, lens and optic nerve. The eye disorder such as cataract is a major health problem in the old age. Cataract is formed by clouding of lens, which is painless and developed slowly over a long period. Cataract will slowly diminish the vision leading to the blindness. At an average age of 65, it is most common and one third of the people of this age in world have cataract in one or both the eyes. A system for detection of the cataract and to test for the efficacy of the post-cataract surgery using optical images is proposed using artificial intelligence techniques. Images processing and Fuzzy K-means clustering algorithm is applied on the raw optical images to detect the features specific to three classes to be classified. Then the backpropagation algorithm (BPA) was used for the classification. In this work, we have used 140 optical image belonging to the three classes. The ANN classifier showed an average rate of 93.3% in detecting normal, cataract and post cataract optical images. The system proposed exhibited 98% sensitivity and 100% specificity, which indicates that the results are clinically significant. This system can also be used to test the efficacy of the cataract operation by testing the post-cataract surgery optical images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acharya, U. R., Wong, L. Y., Ng, E. Y. K., and Suri, J. S., Automatic identification of anterior segment eye abnormality. ITBM-RBM. 28 (1)35–41, 2007. France.

    Google Scholar 

  2. Acharya, U. R., Ng, E. Y. K., and Suri, J. S., Image Modelling of Human Eye. Artech House, Norwood, 2008.

    Google Scholar 

  3. Ahn, C. B., Lee, S. Y., Nalcioglu, O., and Cho, Z. H., An improved nuclear magnetic resonance diffusion coefficient imaging method using an optimized pulse sequence. Med. Phys. 13:789, 1986. doi:10.1118/1.595850.

    Article  Google Scholar 

  4. Ahn, C. B., Lee, S. Y., Nalcioglu, O., and Cho, Z. H., The effects of random directional distributed flow in nuclear magnetic resonance imaging. Med. Phys. 14:43, 1987. doi:10.1118/1.596093.

    Article  Google Scholar 

  5. Atlas, S. W., Bilaniuk, L. T., Zimmerman, R. A., Hackney, D. B., Goldberg, H. I., and Grossman, R. I., Orbit: Initial experience with surface coil spin-echo MR imaging at 1.5 T. Radiology. 164:501, 1987.

    Google Scholar 

  6. Chang, B. A., Janet, A. A., Sung, C. J., Inja, K., William, H. G., and Zang-Hee, C., Nuclear magnetic resonance microscopic ocular imaging for the detection of early-stage cataract. Invest. Ophthalmol. Vis. Sci. 30 (7)1612–1617, 1989.

    Google Scholar 

  7. Cheng, H.-M., Yeh, L. I., Barnett, P., Miglior, S., Eagon, J. C., Gonzalez, G., and Brady, T. J., Proton magnetic resonance imaging of the ocular lens. Exp. Eye Res. 45 (6)875–882, 1987. doi:10.1016/S0014-4835(87)80103-3.

    Article  Google Scholar 

  8. Cho, Z. H., Oh, C. H., Kim, Y. S., Mun, C. W., Nalcioglu, O., Lee, S. J., and Chung, M. K., A new nuclear magnetic resonance imaging technique for unambiguous unidirectional measurement of flow velocity. Appl. Phys. (Berl.). 60 (4)1256–1262, 1986.

    Article  Google Scholar 

  9. De Keizer, R. J. W., Vielvoye, G. J., and De Wolff-Rouendaal, D., Nuclear magnetic resonance imaging of intraocular tumors. Am. J. Ophthalmol. 102 (4)438–441, 1986.

    Google Scholar 

  10. Edwards, P. A., Datiles, M. B., Unser, M., Trus, B. L., Freidlin, V., and Kashima, K., Computerized cataract detection and classification. Curr. Eye Res. 9 (6)517–524, 1990. doi:10.3109/02713689008999591.

    Article  Google Scholar 

  11. Ferraro, J. G., Pollard, T., Muller, A., Lamoureux, E. L., and Taylor, H. R., Detecting cataract causing visual impairment using a nonmydriatic fundus camera. Am. J. Ophthalmol. 139 (4)725–726, 2005. doi:10.1016/j.ajo.2004.09.083.

    Article  Google Scholar 

  12. Finlay, R. D., and Payne, P. A. G., The Eye in General Practice. Butterworth-Heinemann, Oxford, 1988.

    Google Scholar 

  13. Gonzalez, R. C., and Wintz, P., Digital Image Processing, 2nd edn. Addison-Wesley, Reading, 1987.

    Google Scholar 

  14. Hejcmanova, D., Langrova, H., Bytton, L., and Hejcmanova, M., Changes of visual function and visual ability in daily life following cataract surgery. Acta Medica (Hradec Kralove). 46 (4)189–194, 2003.

    Google Scholar 

  15. All About Vision, Statistics on Eye Problems, Injuries and Diseases. http://www.allaboutvision.com/resources/statistics-eye-diseases.htm, 2007. Accessed on 10th December 2008.

  16. Kupfer, C., Bowman lecture. The conquest of cataract: a global challenge. Trans. Opthalmol. Soc. UK. 104:1–10, 1985.

    Google Scholar 

  17. Mafee, M. F., Putterman, A., Valvassori, G. E., Capek, V., and Campos, M., Orbital space-occupying lesions: Role of magnetic resonance imaging and computerized tomography: A review of 145 cases. In: Mafee, M. F. (Ed.), The Radiologic Clinics of North America: Imaging in Ophthalmology, Part I. Saunders, Philadelphia, pp. 529–560, 1987.

    Google Scholar 

  18. Mashiach, R., Vardimon, D., Kaplan, B., Shalev, J., and Meizner, I., Early sonographic detection of recurrent fetal eye anomalies. Ultrasound Obstet. Gynecol. 24 (6)640–643, 2004. doi:10.1002/uog.1748.

    Article  Google Scholar 

  19. Monestam, E., and Wachmeister, L., Impact of cataract surgery on the visual ability of the very old. Am. J. Ophthalmol. 137 (1)145–155, 2004. doi:10.1016/S0002-9394(03)00900-0.

    Article  Google Scholar 

  20. Nayak, J., Bhat, P. S., Acharya, U. R., Lim, C. M., and Gupta, M., Automated identification of different stages of diabetic retinopathy using digital fundus images. J. Med. Syst. USA. 32 (2)107–115, 2008. doi:10.1007/s10916-007-9113-9.

    Article  Google Scholar 

  21. Nusz, K. J., Congdon, N. G., Ho, T., Gramatikov, B. I., Friedman, D. S., Guyton, D. L., and Hunter, D. G., Rapid, objective detection of cataract-induced blur using a bull’s eye photodetector. J. Cataract Refract. Surg. 31 (4)763–770, 2005. doi:10.1016/j.jcrs.2004.09.020.

    Article  Google Scholar 

  22. Remington, L. A., Clinical Anatomy of the Visual System. Butterworth-Heinemann, Boston, 1998.

    Google Scholar 

  23. Snell, R. S., and Lemp, M. A., Clinical Anatomy of the Eye, 2nd edition. Blackwell Science, Oxford, 1997.

    Google Scholar 

  24. Tan, A. G., Wang, J. J., Rochtchina, E., Jakobsen, K. B., and Mitchell, P., Increase in cataract surgery prevalence from 1992–1994 to 1997–2000: analysis of two population cross-sections. Clin. Experiment. Ophthalmol. 32 (3)284–288, 2004. doi:10.1111/j.1442-9071.2004.00817.x.

    Article  Google Scholar 

  25. Vander, J. F., and Gault, J. A., Ophthalmology Secrets, Second Edition. Hanley & Belfus, Philadelphia, 2002.

    Google Scholar 

  26. Wong, E. K., Cho, Z. H., Gardner, B. P., Ahn, C. B., Kim, I., Jo, J. M., Juh, S. C., and Anderson, J. A., In vivo magnetic resonance imaging studies of galactose cataracts. ARVO Abstracts. Invest. Ophthalmol. Vis. Sci. 28 (Suppl)80, 1987.

    Google Scholar 

  27. Yegnanarayana, B., Artificial Neural Networks. Prentice-Hall of India, New Delhi, 1999.

    Google Scholar 

Download references

Acknowledgements

Authors thank Ophthalmology department, Kasturba Medical College, Manipal, India for providing the eye images for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Udyavara Acharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharya, R.U., Yu, W., Zhu, K. et al. Identification of Cataract and Post-cataract Surgery Optical Images Using Artificial Intelligence Techniques. J Med Syst 34, 619–628 (2010). https://doi.org/10.1007/s10916-009-9275-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9275-8

Keywords

Navigation