Skip to main content

Advertisement

Log in

Prediction of Aortic Diameter Values in Healthy Turkish Infants, Children, and Adolescents by Using Artificial Neural Network

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The aorta is the largest vessel in the systemic circuit. Its diameter is very important to guess for child before adult age, due to growing up body. Aortic diameter, one of the cardiac values, changes in time. Evaluation of the cardiac structures and generating a valid regional curve requires a large study group experience for accurate data on normal values. In this study, our aim is to estimate aortic diameter values without curve of charts. Using real sample of the all groups has been predicted using a hybrid system based on combination of Line Based Normalization Method (LBNM) and Artificial Neural Network (ANN) with Levenberg–Marquardt (LM) algorithm. In this study, aortic diameter values dataset divided into two groups as 50% training–50% testing of whole dataset. In order to show the performance of the proposed method, two fold cross validation and prevalent performance measuring methods, Mean Square Error (MSE), Absolute Deviation (AD), Root Mean Square Error (RMSE), statistical relation factor T and R 2, have been used. The obtained MSE results from combination of Min–Max normalization and ANN, combination of Decimal Scaling and ANN, combination of Z-score and ANN, and combination of LBNM and ANN (the proposed method) are 0.00517, 0.001299, 0.006196, and 0.000145, respectively. For the suggested method, error’s results have been given discretely for every age up to adult age. The results are compared to real aortic diameter values by expert with nine year experiences in medical area. These results have shown that the proposed method can be confidently used in the prediction of aortic diameter values in healthy Turkish infants, children and adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Edythe, B. C., Tham MBBS., FRACP and Norman H. Silverman MD., DSc (Med), FASE Measurement of the Tei index: A comparison of M-mode and pulse Doppler methods. J. Am. Soc. Echocardiogr. 17(12):1259–1265, 2004 doi:10.1016/j.echo.2004.07.009.

    Article  Google Scholar 

  2. Kishan, M., Chilukuri, K., Mohan and Sanjay R., Elements of artificial neural networks, ISBN-10:0-262-13328-8 MIT Press, 1996.

  3. http://en.wikipedia.org/wiki/Z-score (Last access: 2 June 2008)

  4. Dirgenali, F., and Kara, S., Recognition of early phase of atherosclerois using principles component analysis and artificial neural networks from carotid artery Doppler signals. Expert Syst. Appl. 31(3):643–651, 2006 doi:10.1016/j.eswa.2005.09.064.

    Article  Google Scholar 

  5. Beale, R., and Jackson, T., Neural computing: An introduction. Institute of Physics, Bristol, UK, 1990.

    Book  MATH  Google Scholar 

  6. Nichols, W. W., and O’Rourke, M. F., Mc Donald’s blood flow in arteries: Theoretical, experimental and clinical principles, (3rd ed.). Edward Arnold, London, UK, 1990.

    Google Scholar 

  7. Polat, K., Güneş, S., and Arslan, A., A cascade learning system for classification of diabetes disease: generalized discriminant analysis and least square support vector machine. Expert Syst. Appl. 34(1):482–487, 2008 doi:10.1016/j.eswa.2006.09.012.

    Article  Google Scholar 

  8. Epstein, M. L., Goldberg, S. J., Allen, H. D., Konecke, L., and Wood, J., Great vessel, cardiac chamber and wall growth patterns in normal children. Circulation. 51:1124–1129, 1975.

    Google Scholar 

  9. http://commons.wikimedia.org/wiki/Image:Sonographer_doing_pediatric_ echocardiography.JPG (Last access. 2 June 2008)

  10. Feigenbaum, H., Echocardiography. Lea & Febiger, Philadelphia, pp. 658–675, 1994.

    Google Scholar 

  11. Schalkoff, R. J., Artificial neural networks. McGraw-Hill, London, UK, 1997.

    MATH  Google Scholar 

  12. Shojai Kaveh, N., Ashrafizadeh, S. N., and Mohammadi, F., Development of an artificial neural network model for prediction of cell voltage and current efficiency in a chlor-alkali membrane cell. Chem. Eng. Res. Des. 86(5A):461–472, 2008

    Google Scholar 

  13. Heravi, S., Osborn, D. R., and Birchenhall, C. R., Linear versus neural network forecasts for European industrial production series. Int. J. Forecast. 20:435–446, 2004 doi:10.1016/S0169-2070(03)00062-1.

    Article  Google Scholar 

  14. Al-Alawi, S. M., Abdul-Wahab, S. A., and Bakheit, C. S., Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environ. Model. Softw. 23:396–403, 2008 doi:10.1016/j.envsoft.2006.08.007.

    Article  Google Scholar 

  15. Carolin Mabel, M., and Fernandez, E., Analysis of wind power generation and prediction using ANN: A case study. Renew. Energy. 33:986–992, 2008 doi:10.1016/j.renene.2007.06.013.

    Article  Google Scholar 

  16. Rumelhart, D., Hinton, D., and Williams, G., Learning internal representations by error 547 propagation. In: Rumelhart, D., and McClelland, F. (Eds.), Parallel Distributed Processing, Vol. 7. MIT, Cambridge, MA, USA., p. 548, 1986.

    Google Scholar 

  17. Guler, I., and Ubeyli, E. D., Detection of ophthalmic artery stenosis by least-mean squares backpropagation neural network. Comput. Biol. Med. 33:333–343, 2003 doi:10.1016/S0010-4825(03)00011-8.

    Article  Google Scholar 

  18. Haykin, S., Neural networks: A comprehensive foundation. Macmillan College, NewYork, 1994.

    MATH  Google Scholar 

  19. Turkoglu, I., Arslan, A., and Ilkay, E., An expert system for diagnosis of the heart valve diseases. Expert Syst. Appl. 23:229–236, 2002 doi:10.1016/S0957-4174(02)00042-8.

    Article  Google Scholar 

  20. Wright, A., and Gough, N. A. J., Artificial neural network analysis of common femoral artery Doppler shift signals: classification of proximal disease. Ultrasound Med. Biol. 24(5):735–743, 1999 doi:10.1016/S0301-5629(99)00015-0.

    Article  Google Scholar 

  21. http://en.wikipedia.org/wiki/Mean_absolute_error (Last access. 2 June 2008)

  22. Razmi-Rad, E., Ghanbarzadeh, B., Mousavi, S. M., Emam-Djomeh, Z., and Khazaei, J., Prediction of rheological properties of Iranian bread dough from chemical composition of wheat flour by using artificial neural networks. J. Food Eng. 81(4):728–734, 2007 doi:10.1016/j.jfoodeng.2007.01.009.

    Article  Google Scholar 

  23. http://www.fmi.uni-sofia.bg/vesta/Virtual_Labs/freq/freq5.html (Last access. 2 June 2008)

  24. http://www.gepsoft.com/gxpt4kb/Chapter09/Section1/SS03/SSS4.htm (last access: 2 June 2008)

  25. Weiss, M., Baret, F., Leroy, M., Hautecoeur, O., Pr’evot, L., and Bruguier, N., Validation of neural network techniques for the estimation of canopy biophysical variables from vegetation data, Vegetation. Lake Maggiore, Italy, 2000.

    Google Scholar 

  26. Esena, H., Inallib, M., Sengurc, A., Esena, M., Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based ANFIS. Build. Environ. Article in Press

  27. Sencan, A., and Kalogirogu, S. A., A new approach using artificial neural Networks for determination of the thermodynamic properties of fluid couples. Energy Convers. Manage. 46(15–16):2405–2418, 2005 doi:10.1016/j.enconman.2004.11.007.

    Article  Google Scholar 

  28. Betchler, H., Browne, M. W., Bansal, P. K., and Kecman, V., New approach to dynamic modelling of vapour compression liquid chillers: artificial neural Networks. Appl. Therm. Eng. 21(9):941–953, 2001 doi:10.1016/S1359-4311(00)00093-4.

    Article  Google Scholar 

Download references

Acknowledgement

This study has been supported by Scientific Research Project of Selcuk University and the study was carried out after obtaining a written informed consent from all parents of the subjects. The protocol was approved by the hospital ethics committee

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bayram Akdemir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akdemir, B., Oran, B., Gunes, S. et al. Prediction of Aortic Diameter Values in Healthy Turkish Infants, Children, and Adolescents by Using Artificial Neural Network. J Med Syst 33, 379 (2009). https://doi.org/10.1007/s10916-008-9200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-008-9200-6

Keywords

Navigation