Skip to main content
Log in

Analysis of the Electrogastrogram Using Discrete Wavelet Transform and Statistical Methods to Detect Gastric Dysrhythmia

  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Electrogastrography (EGG) is a method of recording stomach electrical activity from cutaneous electrodes placed on the abdominal surface. Compared with other electrophysiological measurements, such as electrocardiography, the progress of the applicability of the EGG has been very slow. Unlike imaging or manometrical studies, stomach motility disorders are not diagnosed based only on abnormal EGG parameters. Limitations of EGG recording, processing, computation, acceptable normal parameters, technique and reading should be known to conduct subjective assessments when EGG is used to resolve stomach dysfunction. Therefore appropriate application of non-invasive EGG should go on providing more information and insight in understanding these limitations. And so the aim of this study were to contribute the evolution of the EGG to enter the clinical world as a routine check-up method and to develop new time-frequency analysis method for the detection of gastric dysrhythmia from the EGG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jebbink, R. J., Samsom, M., Bruijs, P. P., et al., Hyperglycemia induces abnormalities of gastric myoelectrical activity in patients with type I diabetes mellitus. Gastroenterology 107:1390–1397, 1994.

    Google Scholar 

  2. Szurszewski, J. H., Electrical basis for gastrointestinal motility. In: Johson, L. R., (Ed.), Physiology of the Gastrointestinal Tract. Vol. I, 2nd ed., pp. 383–422. New York: Raven Press, 1987.

    Google Scholar 

  3. Cheung, B., and Vaitkus, P., Perspectives of electrogastrography and motion sickness. Brain Res. Bull. 47:421–431, 1998.

    Article  Google Scholar 

  4. Koch, K. L., Diabetic gastropathy-gastric neuromuscular dysfunction in diabetes mellitus a review of symptoms, pathophysiology, and treatment. Dig. Dis. Sci. 44(6):1061–1075, 1999.

    Article  Google Scholar 

  5. van der Voort, I. R., Osmanoglou, E., Seybold, M., Heymann-Monnikes, I., et al., Electrogastrography as a diagnostic tool for delayed gastric emptying in functional dyspepsia and irritable bowel syndrome. Neurogastroenterol. Motil. 15:467–473, 2003.

    Article  Google Scholar 

  6. Orr, W. C., Zhang, M., McClanahan, J., Sloan, S., and Chen, J. D., Gastric myoelectric activity in older adults treated with cisapride for gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 14:337–343, 2000.

    Article  Google Scholar 

  7. Hamilton, J. W., Bellahsene, B., and Reichelderfer, M., Human electrogastrograms: Comparison of surface and mucosal recordings. Dig. Dis. Sci. 9:31–33, 1986.

    Google Scholar 

  8. Smout, A. J., van der Schee, E. J., and Grashuis, J. L., What is measured in electrogastrography. Dig. Dis. Sci. 25:179–187, 1980.

    Article  Google Scholar 

  9. Familoni, B. A., Bowes, K. L., Kingma, Y. J., and Cote, K. R., Can transcutaneous recordings detect gastric electrical abnormalities? Gut 32:141–146, 1991.

    Google Scholar 

  10. Alvarez, W. C., The electrogastrogram and what it shows. JAMA 78:1116–1119, 1922.

    Google Scholar 

  11. Chang, F. Y., Electrogastrography: Basic knowledge, recording, processing, and its clinical applications. J. Gastroenterol. Hepatol. 20:502–516, 2005.

    Article  Google Scholar 

  12. Kara, S., Dirgenali, F., and Okkesim, Ş., Estimating gastric rhythm differences using a wavelet method from the electrogastrograms of normal and diabetic subjects. Instrum. Sci. Technolog. 33:519–532, 2005.

    Article  Google Scholar 

  13. van der Schee, E. T., and Grashius, J. L., Running spectral analysis as an aid in the representation and interpretation of electrogastrographic signals. Med. Biol. Eng. Comput. 25:57–62, 1987.

    Google Scholar 

  14. Pfister, C. J., Hamilton, J. W., Nagel, N., Bass, P., Webster, J. G., and Tompkins, W. J., Use of spectral analysis in the detection of frequency differences in the electrogastrograms of normal and diabetic subjects. IEEE Trans. Biomed. Eng. 35:935–941, 1988.

    Google Scholar 

  15. Price, C. N., Westwick, D. T., and Mintchev, M. P., Analysis of canine model of gastric electrical uncoupling using recurrence quantification analysis. Dig. Dis. Sci. 50:885–892, 2005.

    Article  Google Scholar 

  16. Leahy, A., Besherdas, K., Clayman, C., Mason, I., and Epstein, O., Abnormalities of the electrogastrogram in functional gastrointestinal disorders. Am. J. Gastroenterol. 94:1023–1028, 1999.

    Google Scholar 

  17. Nawap, S. H., and Quatieri, T. F., In: Lim, J. S., and Oppenheim, A. V., (Eds.), Short Time Fourier Transform, pp. 239–337. Englewood Cliffs, NJ: Prentice-Hall, 1988.

    Google Scholar 

  18. Kara, S., Dirgenali, F., and Okkesim, S., Estimation of wavelet and short-time Fourier transform sonograms of normal and diabetic subjects’ electrogastrogram. Comput. Biol. Med. 36:1289–1302, 2006.

    Google Scholar 

  19. Daubechies, I., The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5):961–1005, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  20. Soykan, I., Lin, Z., Sarosiek, I., and McCallum, R. W., Gastric myoelectrical activity, gastric emptying, and correlations with symptoms and fasting blood glucose levels in diabetic patient. Am. J. Med. Sci. 317(4):226–231, 1999.

    Article  Google Scholar 

  21. Girault, J. M., Kouame, D., Ouahabi, A., and Patat, F., Micro-emboli detection: An ultrasound Doppler signal processing viewpoint. IEEE Trans. Biomed. Eng. 47:1431–1439, 2000.

    Article  Google Scholar 

  22. Zhang, Y., Wang, Y., Wang, W., and Liu, B., Doppler ultrasound signal denoising based on wavelet frames. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48:709–716, 2001.

    Article  Google Scholar 

  23. Welch, P. D., The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short modified periodograms. IEEE Trans. Audio Electroacoust. 15:70–73, 1967.

    Article  MathSciNet  Google Scholar 

  24. Hu, G., Digital Signal Processing—Theory, Algorithm and Actualization. Qinghua University Press: Beijing, China, 1998.

    Google Scholar 

  25. Cheng, J., and Lan, C., Experimental studies on sound and vibration of a two-tone Chinese Peace Bell. J. Sound Vib. 261:351–358, 2003.

    Article  Google Scholar 

  26. Stern, R. M., Koch, K. L., Stewart, W. R., and Lindblad, I. M., Spectral analysis of tachygastria recorded during motion sickness. Gastroenterology 92:92–97, 1987.

    Google Scholar 

Download references

Acknowledgements

The author would likes to thank Dr. Harun Yılmaz from Erciyes University hospital in the field of EGG for his technical assistance and Prof. Dr. Sadık Kara and Şükrü Okkesim in Erciyes University Electronics Engineering Department (Biomedical Research Group) for their invaluable contributions, supports and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Tokmakçi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokmakçi, M. Analysis of the Electrogastrogram Using Discrete Wavelet Transform and Statistical Methods to Detect Gastric Dysrhythmia. J Med Syst 31, 295–302 (2007). https://doi.org/10.1007/s10916-007-9069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-007-9069-9

Keywords

Navigation