Skip to main content
Log in

Robust Grey Wolf Optimizer for Multimodal Optimizations: A Cross-Dimensional Coordination Approach

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper proposes a variant of the Gray Wolf Optimizer (GWO) called the Cross-Dimensional Coordination Gray Wolf Optimizer (CDCGWO), which utilizes a novel learning technique in which all prior best knowledge is gained by candid solutions (wolves) is used to update the best solution (prey positions). This method maintains the wolf's diversity, preventing premature convergence in multimodal optimization tasks. In addition, CDCGWO provides a unique constraint management approach for real-world constrained engineering optimization problems. The CDCGWO's performance on fifteen widely used multimodal numerical test functions, ten complex IEEE CEC06-2019 suit tests, a randomly generated landscape, and twelve constrained real-world optimization problems in a variety of engineering fields, including industrial chemical producer, power system, process design, and synthesis, mechanical design, power-electronic, and livestock feed ration was evaluated. For all 25 numerical functions and 12 engineering problems, the CDCGWO beats all benchmarks and sixteen out of eighteen state-of-the-art algorithms by an average rank of Friedman test of higher than 78 percent, while exceeding jDE100 and DISHchain1e+12 by 21% and 39%, respectively. For all numerical functions and engineering problems, the Bonferroni-Dunn and Holm's tests indicated that CDCGWO is statistically superior to all benchmark and state-of-the-art algorithms, while its performance is statistically equivalent to jDE100 and DISHchain1e+12. The proposed CDCGWO might be utilized to solve challenges involving multimodal search spaces. In addition, compared to rival benchmarks, CDCGWO is suitable for a broader range of engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The resource data and material can be downloaded using the following links and references. https://seyedalimirjalili.com/projects. https://www3.ntu.edu.sg/home/epnsugan/index_files/cec-benchmarking.htm. https://www3.ntu.edu.sg/home/epnsugan/. https://github.com/P-N-Suganthan.

Code Availability

The source code of the models can be available by request.

References

  1. Zhao, S., et al.: Smart and practical privacy-preserving data aggregation for fog-based smart grids. IEEE Trans. Inf. Forensics Secur. 16, 521–536 (2020)

    Article  Google Scholar 

  2. Kong, H., Lu, L., Yu, J., Chen, Y., Tang, F.: Continuous authentication through finger gesture interaction for smart homes using WiFi. IEEE Trans. Mob. Comput. 20(11), 3148–3162 (2020)

    Article  Google Scholar 

  3. Yu, J., Lu, L., Chen, Y., Zhu, Y., Kong, L.: An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing. IEEE Trans. Mob. Comput. 20, 337–351 (2019)

    Article  Google Scholar 

  4. Mirjalili, S., Lewis, A.: Novel frameworks for creating robust multi-objective benchmark problems. Inf. Sci. (NY) 300, 158–192 (2015). https://doi.org/10.1016/j.ins.2014.12.037

    Article  Google Scholar 

  5. Zervoudakis, K., Tsafarakis, S.: A mayfly optimization algorithm. Comput. Ind. Eng. 145, 106559 (2020)

    Article  Google Scholar 

  6. Meng, F., Pang, A., Dong, X., Han, C., Sha, X.: H∞ optimal performance design of an unstable plant under bode integral constraint. Complexity 2018, 234 (2018)

    Article  Google Scholar 

  7. Galvão, Y.M., Ferreira, J., Albuquerque, V.A., Barros, P., Fernandes, B.J.T.: A multimodal approach using deep learning for fall detection. Expert Syst. Appl. 168, 114226 (2021)

    Article  Google Scholar 

  8. Preuss, M.: Multimodal Optimization by Means of Evolutionary Algorithms. Springer, New York (2015)

    Book  Google Scholar 

  9. Li, J.-P., Li, X.-D., Wood, A.: Species based evolutionary algorithms for multimodal optimization: a brief review. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)

  10. Das, S., Maity, S., Qu, B.-Y., Suganthan, P.N.: Real-parameter evolutionary multimodal optimization—a survey of the state-of-the-art. Swarm Evol. Comput. 1(2), 71–88 (2011)

    Article  Google Scholar 

  11. Zhang, Z., Wang, L., Zheng, W., Yin, L., Hu, R., Yang, B.: Endoscope image mosaic based on pyramid ORB. Biomed. Signal Process. Control 71, 103261 (2022)

    Article  Google Scholar 

  12. Khishe, M., Mosavi, M.R.: Chimp optimization algorithm. Expert Syst. Appl. (2020). https://doi.org/10.1016/j.eswa.2020.113338

    Article  Google Scholar 

  13. Liu, C., Wu, D., Li, Y., Du, Y.: Large-scale pavement roughness measurements with vehicle crowdsourced data using semi-supervised learning. Transp. Res. C Emerg. Technol. 125, 103048 (2021)

    Article  Google Scholar 

  14. Maghdid, H.S., Asaad, A.T., Ghafoor, K.Z., Sadiq, A.S., Mirjalili, S., Khan, M.K.: Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms. In: Multimodal Image Exploitation and Learning 2021, vol. 11734, p. 117340E (2021)

  15. Chen, S., Zhang, J., Meng, F., Wang, D.: A Markov chain position prediction model based on multidimensional correction. Complexity 2021 (2021)

  16. Gupta, S., Abderazek, H., Yıldız, B.S., Yildiz, A.R., Mirjalili, S., Sait, S.M.: Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems. Expert Syst. Appl. 183, 115351 (2021)

    Article  Google Scholar 

  17. Zhang, Y., Jin, Z.: Group teaching optimization algorithm: a novel metaheuristic method for solving global optimization problems. Expert Syst. Appl. 148, 113246 (2020)

    Article  Google Scholar 

  18. Quan, C., Guo, P.: A local search method based on edge age strategy for minimum vertex cover problem in massive graphs. Expert Syst. Appl. 182, 115185 (2021)

    Article  Google Scholar 

  19. Aqil, S., Allali, K.: Local search metaheuristic for solving hybrid flow shop problem in slabs and beams manufacturing. Expert Syst. Appl. 162, 113716 (2020)

    Article  Google Scholar 

  20. Gharehchopogh, F.S., Gholizadeh, H.: A comprehensive survey: Whale Optimization Algorithm and its applications. Swarm Evol. Comput. (2019). https://doi.org/10.1016/j.swevo.2019.03.004

    Article  Google Scholar 

  21. Faramarzi, A., Heidarinejad, M., Stephens, B., Mirjalili, S.: Equilibrium optimizer: a novel optimization algorithm. Knowl. Based Syst. 191, 105190 (2020)

    Article  Google Scholar 

  22. Liu, X., Zhao, J., Li, J., Cao, B., Lv, Z.: Federated neural architecture search for medical data security. IEEE Trans. Ind. Inform. 18, 5628–5636 (2022)

    Article  Google Scholar 

  23. Meng, F., Wang, D., Yang, P., Xie, G.: Application of sum of squares method in nonlinear H∞ control for satellite attitude maneuvers. Complexity 2019 (2019)

  24. Webb, G.I., Keogh, E., Miikkulainen, R., Miikkulainen, R., Sebag, M.: No-free-lunch theorem. In: Encyclopedia of Machine Learning (2011)

  25. Ibrahim, Z., et al.: A Kalman filter approach for solving unimodal optimization problems. ICIC Express Lett. 9(12), 3415–3422 (2015)

    Google Scholar 

  26. Droste, S., Jansen, T., Wegener, I.: On the optimization of unimodal functions with the (1+ 1) evolutionary algorithm. In: International Conference on Parallel Problem Solving from Nature, pp. 13–22 (1998)

  27. Ono, I.: Real-coded genetic algorithm for function optimization using unimodal normal distribution crossover. In: Proceedings of 7th ICGA, pp. 246–253 (1997)

  28. Bao, C., Xu, L., Goodman, E.D.: A new dominance-relation metric balancing convergence and diversity in multi-and many-objective optimization. Expert Syst. Appl. 134, 14–27 (2019)

    Article  Google Scholar 

  29. Luo, B., Zheng, J., Xie, J., Wu, J.: Dynamic crowding distance? A new diversity maintenance strategy for MOEAs. In: 2008 Fourth International Conference on Natural Computation, vol. 1, pp. 580–585 (2008)

  30. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey Wolf optimizer. Adv. Eng. Softw. (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  31. Ahmed, R., Nazir, A., Mahadzir, S., Shorfuzzaman, M., Islam, J.: Niching grey Wolf optimizer for multimodal optimization problems. Appl. Sci. 11(11), 4795 (2021)

    Article  Google Scholar 

  32. Li, S., Chen, H., Wang, M., Heidari, A.A., Mirjalili, S.: Slime mould algorithm: a new method for stochastic optimization. Future Gener. Comput. Syst. (2020). https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  33. Kaur, S., Awasthi, L.K., Sangal, A.L., Dhiman, G.: Tunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)

    Article  Google Scholar 

  34. Hashim, F.A., Houssein, E.H., Mabrouk, M.S., Al-Atabany, W., Mirjalili, S.: Henry gas solubility optimization: a novel physics-based algorithm. Future Gener. Comput. Syst. (2019). https://doi.org/10.1016/j.future.2019.07.015

    Article  Google Scholar 

  35. Yang, S., Wang, J., Deng, B., Azghadi, M.R., Linares-Barranco, B.: Neuromorphic context-dependent learning framework with fault-tolerant spike routing. IEEE Trans. Neural Netw. Learn. Syst. (2021)

  36. Meng, F., Cheng, W., Wang, J.: Semi-supervised software defect prediction model based on tri-training. KSII Trans. INTERNET Inf. Syst. 15(11), 4028–4042 (2021)

    Google Scholar 

  37. Zhang, Y., Liu, F., Fang, Z., Yuan, B., Zhang, G., Lu, J.: Learning from a complementary-label source domain: theory and algorithms. IEEE Trans. Neural Netw. Learn. Syst. (2021)

  38. He, Y., Dai, L., Zhang, H.: Multi-branch deep residual learning for clustering and beamforming in user-centric network. IEEE Commun. Lett. 24(10), 2221–2225 (2020)

    Article  Google Scholar 

  39. Benaissa, B., Hocine, N.A., Khatir, S., Riahi, M.K., Mirjalili, S.: YUKI Algorithm and POD-RBF for Elastostatic and dynamic crack identification. J. Comput. Sci. 55, 101451 (2021)

    Article  Google Scholar 

  40. Cavicchio, D.J.: Adaptive search using simulated evolution (1970)

  41. De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. University of Michigan, Ann Arbor (1975)

    Google Scholar 

  42. Mahfoud, S.W.: Niching Methods for Genetic Algorithms. University of Illinois at Urbana-Champaign, Champaign (1995)

    Google Scholar 

  43. Deb, K., Goldberg, D.E.: An investigation of niche and species formation in genetic function optimization. In: Proceedings of the Third International Conference on Genetic Algorithms, pp. 42–50 (1989)

  44. Mahfoud, S.W.: Simple analytical models of genetic algorithms for multimodal function optimization. In: ICGA, p. 643 (1993)

  45. Harik, G.R.: Finding multimodal solutions using restricted tournament selection. In: ICGA, pp. 24–31 (1995)

  46. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms, pp. 41–49 (1987)

  47. Mahfoud, S.W.: Crowding and preselection revisited. PPSN 2, 27–36 (1992)

    Google Scholar 

  48. Pétrowski, A.: An efficient hierarchical clustering technique for speciation. Evol. Tech. report, Inst. Natl. des Telecommun. Evry, Fr. Tech. Rep. (1997)

  49. Yin, X., Germay, N.: A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization. In: Artificial Neural Nets and Genetic Algorithms, pp. 450–457 (1993)

  50. Li, J.-P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)

    Article  Google Scholar 

  51. Beasley, D., Bull, D.R., Martin, R.R.: A sequential niche technique for multimodal function optimization. Evol. Comput. 1(2), 101–125 (1993)

    Article  Google Scholar 

  52. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurr. Comput. Program C3P Rep. 826, 1989 (1989)

    Google Scholar 

  53. Barrera, J., Coello, C.A.C.: A review of particle swarm optimization methods used for multimodal optimization. Innov. Swarm Intell. 9–37 (2009)

  54. Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 798–803 (1996)

  55. Esquivel, S.C., Coello, C.A.C.: On the use of particle swarm optimization with multimodal functions. In: The 2003 Congress on Evolutionary Computation, 2003. CEC’03, vol. 2, pp. 1130–1136 (2003)

  56. Van Den Bergh, F.: An Analysis of Particle Swarm Optimizers. University of Pretoria, Pretoria (2007)

    Google Scholar 

  57. Mengshoel, O.J., Goldberg, D.E.: Probabilistic crowding: Deterministic crowding with probabilistic replacement (1999)

  58. Harick, G.: Finding multi-modal solutions in problems of bounded difficulty. Technical report, Illinois Genetic Algorithms Laboratory, report (1994)

  59. Roy, R., Parmee, I.C.: Adaptive restricted tournament selection for the identification of multiple sub-optima in a multi-modal function. In: AISB Workshop on Evolutionary Computing, pp. 236–256 (1996)

  60. Shir, O.M., Bäck, T.: Niching in evolution strategies. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 915–916 (2005)

  61. Laumanns, M., Rudolph, G., Schwefel, H.-P.: A spatial predator-prey approach to multi-objective optimization: a preliminary study. In: International Conference on Parallel Problem Solving from Nature, pp. 241–249 (1998)

  62. Jiménez, F., Verdegay, J.L.: Evolutionary techniques for constrained multi-objective optimization problems (1999)

  63. Rudolph, G.: Evolutionary search under partially ordered fitness sets. Citeseer (2001)

  64. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  65. Ray, T., Tai, K., Seow, C.: An evolutionary algorithm for multi-objective optimization. Eng. Optim. 33(3), 399–424 (2001)

    Article  Google Scholar 

  66. Mosavi, M.R., Khishe, M., Ghamgosar, A.: Classification of sonar data set using neural network trained by gray Wolf optimization. Neural Netw. World (2016). https://doi.org/10.14311/nnw.2016.26.023

    Article  Google Scholar 

  67. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Evaluation of comprehensive learning particle swarm optimizer. In: International Conference on Neural Information Processing, pp. 230–235 (2004)

  68. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  69. Mirjalili, S.Z., Mirjalili, S., Zhang, H., Chalup, S., Noman, N.: Improving the reliability of implicit averaging methods using new conditional operators for robust optimization. Swarm Evol. Comput. 51, 100579 (2019)

    Article  Google Scholar 

  70. Mosavi, M.R., Kaveh, M., Khishe, M., Aghababaie, M.: Design and implementation a sonar data set classifier using multi-layer perceptron neural network trained by elephant herding optimization. IJMT 5(1), 1–12 (2018)

    Google Scholar 

  71. Suganthan, P.N. et al.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Tech. report, Nanyang Technol. Univ. Singapore, May 2005 KanGAL Rep. 2005005, IIT Kanpur, India (2005)

  72. Price, P.N.K.V., Awad, N. H., Ali, M. Z., Suganthan: Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Technical report (2018). https://personal.ntu.edu.sg/404.html

  73. Kumar, A., Wu, G., Ali, M.Z., Mallipeddi, R., Suganthan, P.N., Das, S.: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol. Comput. (2020). https://doi.org/10.1016/j.swevo.2020.100693

    Article  Google Scholar 

  74. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of non-parametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. (2011). https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  75. Dhiman, G., Kumar, V.: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. (2017). https://doi.org/10.1016/j.advengsoft.2017.05.014

    Article  Google Scholar 

  76. Dhiman, G., Kumar, V.: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst. (2019). https://doi.org/10.1016/j.knosys.2018.11.024

    Article  Google Scholar 

  77. Yang, X.S.: Firefly algorithms for multimodal optimization (2009) https://doi.org/10.1007/978-3-642-04944-6_14

  78. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  79. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  80. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. (2000). https://doi.org/10.1016/S0045-7825(99)00389-8

    Article  MATH  Google Scholar 

  81. Tasgetiren, M.F., Suganthan, P.N.: A multi-populated differential evolution algorithm for solving constrained optimization problem (2006). https://doi.org/10.1109/cec.2006.1688287

  82. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. (2000). https://doi.org/10.1109/4235.873238

    Article  Google Scholar 

  83. Garg, H.: A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. (2016). https://doi.org/10.1016/j.amc.2015.11.001

    Article  MathSciNet  MATH  Google Scholar 

  84. Gallagher, M., Yuan, B.: A general-purpose tunable landscape generator. IEEE Trans. Evol. Comput. 10(5), 590–603 (2006)

    Article  Google Scholar 

  85. Bland, J.M., Altman, D.G.: Multiple significance tests: the Bonferroni method. BMJ 310(6973), 170 (1995)

    Article  Google Scholar 

  86. Zimmerman, D.W., Zumbo, B.D.: Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks. J. Exp. Educ. 62(1), 75–86 (1993)

    Article  Google Scholar 

  87. Levin, B.: On the Holm, Simes, and Hochberg multiple test procedures. Am. J. Public Health 86(5), 628–629 (1996)

    Article  Google Scholar 

Download references

Funding

This work was supported by Foundation of Henan Educational Committee under Grant 21B520013, Henan Institute of Science and Technology under Grants 192400410199 and 202102210365, and National Natural Science Foundation of China under Grants U1536201, and 61271392.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuchong Li or Mohammad Khishe.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Liu, L., Li, Y. et al. Robust Grey Wolf Optimizer for Multimodal Optimizations: A Cross-Dimensional Coordination Approach. J Sci Comput 92, 110 (2022). https://doi.org/10.1007/s10915-022-01955-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01955-z

Keywords

Navigation