Skip to main content
Log in

A Class of Lagrangian–Eulerian Shock-Capturing Schemes for First-Order Hyperbolic Problems with Forcing Terms

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we develop an improved shock-capturing and high-resolution Lagrangian–Eulerian method for hyperbolic systems and balance laws. This is a new method to deal with discontinuous flux and complicated source terms having concentrations for a wide range of applications science and engineering, namely, 1D shallow-water equations, sedimentation processes, Geophysical flows in 2D, N-Wave models, and Riccati-type problems with forcing terms. We also include numerical simulations of a 1D two-phase flow model in porous media, with gravity and a nontrivial singular \(\delta \)-source term representing an injection point. Moreover, we present approximate solutions for 2D nonlinear systems (Compressible Euler Flows and Shallow-Water Equations) for distinct benchmark configurations available in the literature aiming to present convincing and robust numerical results. In addition, for the linear advection model in 1D and for a smooth solution of the nonlinear Burgers’ problem, second order approximations were obtained. We also present a high-resolution approximation of the nonlinear non-convex Buckley–Leverett problem. Based on the work of A. Harten, we derive a convergent Lagrangian–Eulerian scheme that is total variation diminishing and second-order accurate, away from local extrema and discontinuous data. Additionally, using a suitable Kružkov’s entropy definition, introduced by K. H. Karlsen and J. D. Towers, we can verify that our improved Lagrangian–Eulerian scheme converges to the unique entropy solution for conservation laws with a discontinuous space-time dependent flux. A key hallmark of our method is the dynamic tracking forward of the no-flow curves, which are locally conservative and preserve the natural setting of weak entropic solutions related to hyperbolic problems that are not reversible systems in general. In the end, we have a general procedure to construct a class of Lagrangian–Eulerian schemes to deal with hyperbolic problems with or without forcing terms. The proposed scheme is free of Riemann problem solutions and no adaptive space-time discretizations are needed. The numerical experiments verify the efficiency and accuracy of our new Lagrangian–Eulerian method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Abreu, E., Díaz, C., Galvis, J., Pérez, J.: On the conservation properties in multiple scale coupling and simulation for Darcy flow with hyperbolic-transport in complex flows. Multiscale Model. Simul. 18(4), 1375–1408 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abreu, E., Bustos, A., Ferraz, P., Lambert, W.: A relaxation projection analytical-numerical approach in hysteretic two-phase flows in porous media. J. Sci. Comput. 79(3), 1936–1980 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abreu, E.: Numerical modelling of three-phase immiscible flow in heterogeneous porous media with gravitational effects. Math. Comput. Simul. 97, 234–259 (2014)

    Article  MathSciNet  Google Scholar 

  4. Abreu, E., Colombeau, M., Panov, E.Y.: Weak asymptotic methods for scalar equations and systems. J. Math. Anal. Appl. 444, 1203–1232 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abreu, E., Colombeau, M., Panov, E.Y.: Approximation of entropy solutions to degenerate nonlinear parabolic equations. Z. Angew. Math. Phys. 68, 133 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abreu, E., Lambert, W., Pérez, J., Santo, A.: A new finite volume approach for transport models and related applications with balancing source terms. Math. Comput. Simul. 137, 2–28 (2017)

    Article  MathSciNet  Google Scholar 

  7. Abreu, E., Matos, V., Pérez, J., Rodríguez-Bermudez, P.: Vertical two-phase flow under Dirac \(\delta \)-source in porous media (in preparation)

  8. Abreu, E., Pérez, J.: A fast, robust, and simple Lagrangian–Eulerian solver for balance laws and applications for balance laws and applications. Comput. Math. Appl. 77(9), 2310–2336 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Abgrall, R., Karni, S.: A comment on the computation of non-conservative products. J. Comput. Phys. 45, 382–403 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Albertia, G., Bianchini, S., Caravenna, L.: Eulerian, Lagrangian and Broad continuous solutions to a balance law with non-convex flux I. J. Differ. Equ. 261(8), 4298–4337 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Andreianov, B., Cancès, C.: Vanishing capillarity solutions of Buckley–Leverett equation with gravity in two-rocks medium. Comput. Geosci. 17, 551–572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Amadori, D., Gosse, L.: Error Estimates for Well-Balanced Schemes on Simple Balance Laws (One-Dimensional Position-Dependent Models). Springer Briefs in Mathematics. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  13. Andreianov, B.: New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux. ESAIM Proc. Surv. 50, 40–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Andreianov, B., Mitrović, D.: Entropy conditions for scalar conservation laws with discontinuous flux revisited. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 32(6), 1307–1335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Aquino, J., Francisco, A.S., Pereira, F., Jordem Pereira, T., Amaral Souto, H.P.: A Lagrangian strategy for the numerical simulation of radionuclide transport problems. Prog. Nucl. Energy 52, 282–291 (2010)

    Article  Google Scholar 

  16. Botchorishvili, R., Perthame, B., Vasseur, A.: Equilibrium schemes for scalar conservation laws with stiff sources. Math. Comput. 72(241), 131–157 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Burger, R., Karlsen, K.H., Towers, J.D.: An Engquist–Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47(3), 1684–1712 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Christov, I., Popov, B.: New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. J. Comput. Phys. 227, 5736–5757 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Crandall, M.G., Majda, A.: Monotone difference approximations for scalar conservation law. J. Math. Comput. 34, 1–21 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Crasta, G., De Cicco, V., De Philippis, G., Ghiraldin, F.: Structure of solutions of multidimensional conservation laws with discontinuous flux and applications to uniqueness. Arch. Ration. Mech. Anal. 221(2), 961–985 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. da Silva, D.: Soluções de Riemann para um escoamento bifásico com fonte de Dirac em um meio poroso, Master Thesis, Fluminense Federal University (2016)

  22. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuous Physics. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  23. Diehl, S.: A conservation law with point source and discontinuous flux function modelling continuous sedimentation. SIAM J. Appl. Math. 56(2), 388–419 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Douglas Jr., J., Huang, C.-S.: A locally conservative Eulerian–Lagrangian finite difference method for a parabolic equation. BIT Numer. Math. 41(3), 480–489 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Douglas, J., Felipe, P., Yeh, L.-M.: A locally conservative Eulerian–Lagrangian numerical method and its application to nonlinear transport in porous media. Comput. Geosci. 4(1), 1–40 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gosse, L.: Computing Qualitatively Correct Approximations of Balance Laws Exponential-Fit, Well-Balanced and Asymptotic-Preserving SIMAI Springer Series, vol. 2. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  27. Guermond, J.-L., Popov, B.: Invariant domains and second-order continuous finite element approximation for scalar conservation equations. SIAM J. Numer. Anal. 55(6), 3120–3146 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Greenberg, J.M., LeRoux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33(1), 1–16 (1996)

    Article  MathSciNet  Google Scholar 

  29. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hu, X.Y., Adams, N.A., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. J. Comput. Phys. 242, 169–180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Huang, Ch-S, Arbogast, T., Qiu, J.: An Eulerian–Lagrangian WENO finite volume scheme for advection problems. J. Comput. Phys. 231(11), 4028–4052 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Isaacson, E., Temple, B.: Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52, 1260–1278 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Isaacson, E., Temple, B.: Convergence of the \(2 \times 2\) Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55, 625–640 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jin, S., Wen, X.: Two interface-type numerical methods for computing hyperbolic systems with geometrical source terms having concentrations. SIAM J. Sci. Comput. 26(6), 2079–2101 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kaasschieter, E.F.: Solving the Buckley–Leverett equation with gravity in a heterogeneous porous medium. Comput. Geosci. 3(1), 23–48 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Karlsen, K.H., Towers, J.D.: Convergence of the Lax–Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux. Chin. Ann. Math. Ser. B 25(3), 287–318 (2004)

    Article  MATH  Google Scholar 

  37. Karlsen, K.H., Towers, J.D.: Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition. J. Hyperbolic Differ. Equ. 14, 671 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Langseth, J.O., Tveito, A., Winther, R.: On the convergence of operator spliting applied to conservation laws with source terms SIAM. J. Numer. Anal. 33(3), 843–863 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lax, P.D., Liu, X.-D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19, 319–340 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. LeFloch, P.G., Thanh, M.D.: A Godunov-type method for the shallow water equations with variable topography in the resonant regime. J. Comput. Phys. 230, 7631–7660 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  42. Levy, D., Puppo, G., Russo, G.: A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 24(2), 480–506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma, Yu., Chen, Z., Huan, G.: Computational Methods for Multiphase Flows in Porous Media. SIAM Society for Industrial and Applied Mathematics, Philadelphia (2006)

    MATH  Google Scholar 

  44. Mishra, S.: Chapter 18—numerical methods for conservation laws with discontinuous coefficients. Handb. Numer. Anal. 18, 479–506 (2017)

    MATH  Google Scholar 

  45. Mishra, S.: On the convergence of numerical schemes for hyperbolic systems of conservation laws. Proc. Int. Cong. Math. Rio de Janeiro 3, 3625–3652 (2018)

    Google Scholar 

  46. Mochon, S.: An analysis of the traffic on highways with changing surface conditions. Math. Model. 9(1), 1–11 (1987)

    Article  MathSciNet  Google Scholar 

  47. Ostrov, D.N.: Solutions of Hamilton–Jacobi equations and scalar conservation laws with discontinuous space-time dependence. J. Differ. Equ. 182, 51–77 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pérez, J.A.: A Lagrangian–Eulerian computational formulation to hyperbolic problems and balance laws, PhD. Thesis, University of Campinas (2015)

  49. Rodríguez-Bermúdez, P., Marchesin, D.: Riemann Solutions for vertical flow of three phases in porous media: simple cases. J. Hyperbolic Differ. Equ. 10, 335–370 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Schulz-Rinne, C.W.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24, 76–88 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14(6), 1394–1414 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  52. Serre, D., Silvestre, L.: Multi-dimensional Burgers equation with unbounded initial data: well-posedness and dispersive estimates. Arch. Ration. Mech. Anal. 234, 1391–1411 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Shu, C.-W.: High order WENO and DG methods for time-dependent convection-dominated PDEs: a brief survey of several recent developments. J. Comput. Phys. 316, 598–613 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Towers, J.D.: Convergence of the Godunov scheme for a scalar conservation law with time and space discontinuities. J. Hyperbolic Differ. Equ. 15(2), 175–190 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wintermeyer, N., Winters, A.R., Gassner, G.J., Kopriva, D.A.: An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. J. Comput. Phys. 340, 200–242 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33, 1476–1493 (2010)

    Article  Google Scholar 

  57. Xing, Y., Shu, C.-W.: A survey of high order schemes for the shallow water equations. J. Math. Study 47(3), 221–249 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230, 1238–1248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231, 2245–2258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zefreh, M.G., Doster, F., Hesse, M.: Theory of dissolution and precipitation waves-redux, Transport phenomena and fluid mechanics. First published, vol. 13 (2019). https://doi.org/10.1002/aic.16573

  61. Zhang, X., Xia, Y., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50(1), 29–62 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

E. Abreu thanks research grants as well as thanks to all the support given by the Brazilian funding agencies FAPESP 2019/20991-8 (São Paulo), CNPq 306385 /2019-8 (National) and PETROBRAS 2015/00398-0. John Pérez thanks the Faculty of Exact and Applied Sciences at Instituto Tecnológico Metropolitano (Medellín, Colombia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Abreu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, E., Matos, V., Pérez, J. et al. A Class of Lagrangian–Eulerian Shock-Capturing Schemes for First-Order Hyperbolic Problems with Forcing Terms. J Sci Comput 86, 14 (2021). https://doi.org/10.1007/s10915-020-01392-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01392-w

Keywords

Mathematics Subject Classification

Navigation