Skip to main content
Log in

An H2N2 Interpolation for Caputo Derivative with Order in (1, 2) and Its Application to Time-Fractional Wave Equations in More Than One Space Dimension

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a new derived method is developed for a known numerical differential formula of the Caputo fractional derivative of order \(\gamma \in (1,2)\) (Li and Zeng in Numerical methods for fractional calculus. Chapman & Hall/CRC numerical analysis and scientific computing, CRC Press, Boca Raton, 2015) by means of the quadratic interpolation polynomials, and a concise expression of the truncation error is given. This new method will be called as the H2N2 method because of the application of the quadratic Hermite and Newton interpolation polynomials. A finite difference scheme with a second order accuracy in space and a \((3-\gamma )\)-th order accuracy in time based on the H2N2 method is constructed for the initial boundary value problem of time-fractional wave equations. The stability and convergence of the difference scheme are proved. Furthermore, in order to increase computational efficiency, using the sum-of-exponentials to approximate the kernel \(t^{1-\gamma }\), a fast difference scheme is presented. The problem with weak regularity at the initial time is also discussed with the help of the graded meshes. At each time level, the difference scheme is solved with a fast Poisson solver. Numerical results show the effectiveness of the two difference schemes and confirm our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Banjai, L., López-Fernández, M.: Efficient high order algorithms for fractional integrals and fractional differential equations. Numer. Math. 141, 289–317 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Benson, D.A.: The fractional advection-dispersion equation: development and application. Ph.D. thesis, University of Nevada at Reno (1998)

  4. Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970)

    MathSciNet  MATH  Google Scholar 

  5. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13, 529–539 (1967)

    Google Scholar 

  6. Caputo, M., Mainardi, F.: New dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147 (1971)

    MATH  Google Scholar 

  7. Cartea, A., del Castillo-Negrete, D.: Fractional diffusion models of option prices in markets with jumps. Physica A 374, 749–763 (2007)

    Google Scholar 

  8. Chen, W.: A speculative study of 2/3-order fractional Laplacian modeling of turbulence: some thoughts and conjectures. Chaos 16, 023126 (2006)

    MATH  Google Scholar 

  9. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, 167–191 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    MathSciNet  Google Scholar 

  12. Ke, R., Ng, M.K., Sun, H.W.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303, 203–211 (2015)

    MathSciNet  MATH  Google Scholar 

  13. La Porta, A., Voth, G.A., Crawford, A.M., Alexander, J., Bodenschatz, E.: Fluid particle accelerations in fully developed turbulence. Nature 409, 1017–1019 (2001)

    MATH  Google Scholar 

  14. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman & Hall/CRC Numerical Analysis and Scientific Computing. CRC Press, Boca Raton (2015)

    Google Scholar 

  15. Li, J.R.: A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 31, 4696–4714 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    MathSciNet  MATH  Google Scholar 

  17. López-Fernández, M., Lubich, C., Schädle, A.: Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30, 1015–1037 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Lu, X., Pang, H.K., Sun, H.W.: Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations. Numer. Linear Algebra Appl. 22, 866–882 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    MathSciNet  MATH  Google Scholar 

  20. Luchko, Y., Mainardi, F., Povstenko, Y.: Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation. Comput. Math. Appl. 66, 774–784 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(38), A2699–A2724 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Lynch, V.E., Carreras, B.A., del Castillo-Negrete, D., Ferreira-Mejias, K.M., Hicks, H.R.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406–421 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models. Imperial College Press, London (2010)

    MATH  Google Scholar 

  24. McLean, W.: Exponential Sum Approximations for \(t^{-\beta }\). Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, vol. 1, pp. 911–930. Springer, Cham (2018)

    Google Scholar 

  25. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  26. Podlubny, I.: Fractional Differential Equations. Vol. 198 of Mathematics in Science and Engineering. Academic Press Inc., San Diego, CA (1999)

    Google Scholar 

  27. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Physica A 284, 376–384 (2000)

    MathSciNet  Google Scholar 

  28. Scalas, E., Gorenflo, R., Mainardi, F.: Uncoupled continuous-time random walks: solution and limiting behavior of the master equation. Phys. Rev. E. 69(1), 011107 (2004)

    MathSciNet  Google Scholar 

  29. Shen, J., Sun, Z.Z., Du, R.: Fast finite difference schemes for the time-fractional diffusion equation with a weak singularity at the initial time. East Asian J. Appl. Math. 8, 834–858 (2018)

    MathSciNet  Google Scholar 

  30. Stynes, M., O’riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Sun, H., Sun, Z.Z., Gao, G.H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differ. Equ. 32, 970–1001 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Sun, H., Zhao, X., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation. J. Sci. Comput. 78, 467–498 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Sweilam, N.H., Khader, M.M., Adel, M.: On the stability analysis of weighted average finite difference methods for fractional wave equation. Fract. Differ. Calc. 2, 17–29 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51, 294–298 (1984)

    MATH  Google Scholar 

  36. Wang, Z., Huang, X., Shi, G.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62, 1531–1539 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Yang, J.Y., Huang, J.F., Liang, D.M., Tang, Y.F.: Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38, 3652–3661 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Yong, Z., Benson, D.A., Meerschaert, M.M., Scheffler, H.-P.: On using random walks to solve the space-fractional advection-dispersion equations. J. Stat. Phys. 123, 89–110 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Yu, Y., Perdikaris, P., Karniadakis, G.E.: Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms. J. Comput. Phys. 323, 219–242 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Zeng, F.H., Li, C.P.: A new Crank–Nicolson finite element method for the time-fractional subdiffusion equation. Appl. Numer. Math. 121, 82–95 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Zeng, F.H., Turner, I., Burrage, K., Karniadakis, G.E.: A new class of semi-implicit methods with linear complexity for nonlinear fractional differential equations. SIAM J. Sci. Comput. 40, A2986–A3011 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Zeng, F.H., Zhang, Z.Q., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their heartfelt thanks to an anonymous reviewer for bringing their attention to the problem with the weak regularity at the starting time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-zhong Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sun is supported by National Natural Science Foundation of China (No. 11671081) and Li is supported by National Natural Science Foundation of China (No. 11671251).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Li, C. & Sun, Zz. An H2N2 Interpolation for Caputo Derivative with Order in (1, 2) and Its Application to Time-Fractional Wave Equations in More Than One Space Dimension. J Sci Comput 83, 38 (2020). https://doi.org/10.1007/s10915-020-01219-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01219-8

Keywords

Navigation