Skip to main content
Log in

Arnoldi Method for Large Quaternion Right Eigenvalue Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the Arnoldi method of the right eigenvalue problem of the large-scale quaternion matrices. We use the real structure-preserving rather than the quaternion or the real structure, which has limitations in dealing with large quaternion matrices, to construct algorithms. The basic quaternion Arnoldi method is proposed to get the partial Schur decomposition of the quaternion matrices. Then, we give a novel algorithm for calculating the right eigenvectors of a quaternion Schur form. Furthermore, an explicitly restarted quaternion Arnoldi method (ERQAM) is presented to solve the right eigenpairs of the quaternion matrices. Finally, we provide five numerical examples which show the efficiency and accuracy of the proposed algorithms, and illustrate that the performance of ERQAM for large low rank quaternion matrices is better than that of the already known and brand-new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang, F.Z.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)

    Article  MathSciNet  Google Scholar 

  2. Jiang, T.S., Chen, L.: An algebraic method for Schrödinger equations in quaternionic quantum mechanics. Comput. Phys. Commun. 178(11), 795–799 (2008)

    Article  Google Scholar 

  3. De Leo, S., Scolarici, G.: Right eigenvalue equation in quaternionic quantum mechanics. J. Phys. A Math. Gen. 33(15), 2971 (2000)

    Article  MathSciNet  Google Scholar 

  4. Wang, Q.W., He, Z.H., Zhang, Y.: Constrained two-sided coupled Sylvester-type quaternion matrix equations. Automatica 101, 207–213 (2019)

    Article  MathSciNet  Google Scholar 

  5. He, Z.H., Wang, Q.W.: A real quaternion matrix equation with applications. Linear Multilinear Algebra 61(6), 725–740 (2013)

    Article  MathSciNet  Google Scholar 

  6. Le Bihan, N., Sangwine, S.J.: Quaternion principal component analysis of color images. In: ICIP, vol. 1, p. I-809 (2003)

  7. Farenick, D.R., Pidkowich, B.A.: The spectral theorem in quaternions. Linear Algebra Appl. 371, 75–102 (2003)

    Article  MathSciNet  Google Scholar 

  8. Bunse-Gerstner, A., Byers, R., Mehrmann, V.: A quaternion QR algorithm. Numer. Math. 55(1), 83–95 (1989)

    Article  MathSciNet  Google Scholar 

  9. Jia, Z.G., Wei, M.S., Ling, S.T.: A new structure-preserving method for quaternion Hermitian eigenvalue problems. J. Comput. Appl. Math. 239, 12–14 (2013)

    Article  MathSciNet  Google Scholar 

  10. Jia, Z.G., Wei, M.S., Zhao, M.X., Chen, Y.: A new real structure-preserving quaternion QR algorithm. J. Comput. Appl. Math. 343, 26–48 (2018)

    Article  MathSciNet  Google Scholar 

  11. Li, Y., Wei, M.S., Zhang, F.X., Zhao, J.L.: On the power method for quaternion right eigenvalue problem. J. Comput. Appl. Math. 345, 59–69 (2019)

    Article  MathSciNet  Google Scholar 

  12. Ma, R.R., Jia, Z.G., Bai, Z.J.: A structure-preserving Jacobi algorithm for quaternion Hermitian eigenvalue problems. Comput. Math. Appl. 75(3), 809–820 (2018)

    Article  MathSciNet  Google Scholar 

  13. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9(1), 17–29 (1951)

    Article  MathSciNet  Google Scholar 

  14. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix. Anal. A 13(1), 357–385 (1992)

    Article  MathSciNet  Google Scholar 

  15. Morgan, R.: On restarting the Arnoldi method for large nonsymmetric eigenvalue problems. Math. Comput. AMS 65(215), 1213–1230 (1996)

    Article  MathSciNet  Google Scholar 

  16. Greenbaum, A., Trefethen, L.N.: GMRES/CR and Arnoldi/Lanczos as matrix approximation problems. SIAM J. Sci. Comput. 15(2), 359–368 (1994)

    Article  MathSciNet  Google Scholar 

  17. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Manchester University Press, Manchester (1992)

    MATH  Google Scholar 

  18. Rodman, L.: Topics in Quaternion Linear Algebra. Princeton University Press, Princeton (2014)

    Book  Google Scholar 

  19. Brenner, J.L.: Matrices of quaternions. Pac. J. Math. 1(3), 329–335 (1951)

    Article  MathSciNet  Google Scholar 

  20. Jia, Z.X., Stewart, G.: An analysis of the Rayleigh–Ritz method for approximating eigenspaces. Math. Comput. 70(234), 637–647 (2001)

    Article  MathSciNet  Google Scholar 

  21. Giraud, L., Langou, J., Rozloznik, M.: The loss of orthogonality in the Gram–Schmidt orthogonalization process. Comput. Math. Appl. 50(7), 1069–1075 (2005)

    Article  MathSciNet  Google Scholar 

  22. Emad, N., Petiton, S., Edjlali, G.: Multiple explicitly restarted Arnoldi method for solving large eigenproblems. SIAM J. Sci. Comput. 27(1), 253–277 (2005)

    Article  MathSciNet  Google Scholar 

  23. Nishida, A.: Least squares Arnoldi for large nonsymmetric eigenproblems. In: Proceedings of the 5th Copper Mountain Conference on Iterative Methods, vol. 2 (1998)

  24. Chen, Y.: Structure-preserving QR algorithm of general quaternion eigenvalue problem with application to color watermarking. Jiangsu Normal University (2018)

  25. Stewart, G.W.: A Krylov Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23, 601–614 (2001)

    Article  MathSciNet  Google Scholar 

  26. Jia, Z.G, Ng, M. K., Song, G.J.: Lanczos method for large-scale quaternion singular value decomposition. Numer. Algorithms (2018). https://doi.org/10.1007/s11075-018-0621-0

  27. Lehoucq, R.B.: Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration. Rice University (1995)

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Signal Process. 13(4), 600–612 (2004)

    Google Scholar 

  29. Subakan, Ö.N., Vemuri, B.C.: A quaternion framework for color image smoothing and segmentation. Int. J. Comput. Vision. 91(3), 233–250 (2011)

    Article  MathSciNet  Google Scholar 

  30. Li, Y., Wei, M.S., Zhang, F.X., Zhao, J.L.: A fast structure-preserving method for computing the singular value decomposition of quaternion matrix. Appl. Math Comput. 235, 157–167 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Wen Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (11971294).

Appendix A: Proof of Theorem 3.1

Appendix A: Proof of Theorem 3.1

Let \(\{\mathbf {q}_1,\ldots ,\mathbf {q}_j\}\) be the orthonormal basis of the Krylov subspace \(\mathcal {K}_j(A,\mathbf {v})\), (\(j \le s\)). If \(A^{j} \mathbf {v}\notin \mathcal {K}_j(A,\mathbf {v})\), then the vector \(\mathbf {q}_{j+1}\) can be constructed by the Gram−Schmidt algorithm,

$$\begin{aligned} \mathbf {y}_j= & {} A^j \mathbf {v}-\sum ^{j}_{i=1}\mathbf {q}_i\langle \mathbf {q}_i,A^j \mathbf {v}\rangle ,\\ \mathbf {q}_{j+1}= & {} \mathbf {y}_j/\Vert \mathbf {y}_j\Vert _{\mathbb {H}}, \end{aligned}$$

where \(\{\mathbf {q}_1,\ldots , \mathbf {q}_j,\mathbf {q}_{j+1}\}\) is a standard orthogonal basis of \(\mathcal {K}_{j+1}(A,\mathbf {v})\). Let \(\mathbf {q}_1=\mathbf {v}/\Vert \mathbf {v}\Vert _{\mathbb {H}}\) and \(A\mathbf {q}_1=\mathbf {q}_1 d_1+\mathbf {q}_2 d_2, d_1, d_2 \in \mathbb {H}\). Then

$$\begin{aligned} \begin{aligned} \mathcal {K}_{j+1}(A,\mathbf {v})&=\text {span}_{\mathbb {H}}\{\mathbf {v},A\mathbf {v},\ldots ,A^{j} \mathbf {v}\} \\&=\text {span}_{\mathbb {H}}\{\mathbf {q}_1,A\mathbf {q}_1,A^2 \mathbf {q}_1,\ldots ,A^j \mathbf {q}_1\}\\&=\text {span}_{\mathbb {H}}\{\mathbf {q}_1,\mathbf {q}_1 d_1+\mathbf {q}_2 d_2,A(\mathbf {q}_1 d_1+\mathbf {q}_2 d_2),\ldots ,A^{j-1}(\mathbf {q}_1 d_1+\mathbf {q}_2 d_2)\}\\&=\text {span}_{\mathbb {H}}\{\mathbf {q}_1,\mathbf {q}_2,A\mathbf {q}_2,\ldots ,A^{j-1}\mathbf {q}_2\}\\&=\ldots \\&=\text {span}_{\mathbb {H}}\{\mathbf {q}_1,\mathbf {q}_2,\mathbf {q}_3,\ldots ,\mathbf {q}_j,A\mathbf {q}_j\} .\end{aligned} \end{aligned}$$

We replace \(A^j \mathbf {v}\) with \(A\mathbf {q}_j\) in the Gram−Schmidt orthogonalization process, and

$$\begin{aligned} \mathbf {u}_j=A\mathbf {q}_j-\sum ^{j}_{i=1}\mathbf {q}_i\langle \mathbf {q}_i,A\mathbf {q}_j\rangle . \end{aligned}$$
(A.1)

Since s is the minimum positive integer, and \(\mathcal {K}_s(A,\mathbf {v})=\mathcal {K}_m(A,\mathbf {v})\) for every \(m\ge s\). We have

$$\begin{aligned} \mathbf {u}_s=\mathbf {0} \ and\ \mathbf {u}_j\ne \mathbf {0} \ for\ every\ j<s. \end{aligned}$$

When \(j<s\), we can continue to extend the standard orthogonal basis by the following formula,

$$\begin{aligned} \mathbf {q}_{j+1}=\mathbf {u}_j/\Vert \mathbf {u}_j\Vert _{\mathbb {H}}. \end{aligned}$$

It follows from \(\mathbf {q}_{j+1} \perp \text {span}_{\mathbb {H}}\{\mathbf {q}_1,\ldots ,\mathbf {q}_j\}\) that

$$\begin{aligned} \begin{aligned} \langle \mathbf {q}_{j+1},\mathbf {u}_j\rangle&=\mathbf {q}_{j+1}^{*} \mathbf {u}_j\\&=\mathbf {q}_{j+1}^{*}A \mathbf {q}_j -\sum ^{j}_{i=1}\mathbf {q}_{j+1}^{*}\mathbf {q}_i\langle \mathbf {q}_i,A \mathbf {q}_j\rangle \\&=\mathbf {q}_{j+1}^{*}A \mathbf {q}_j\\&=\langle \mathbf {q}_{j+1},A\mathbf {q}_j\rangle ,\end{aligned} \end{aligned}$$

and

$$\begin{aligned} \mathbf {q}_{j+1}^{*}\mathbf {u}_j=\frac{\mathbf {u}_j^{*} \mathbf {u}_j}{\Vert \mathbf {u}_j\Vert _{\mathbb {H}}}=\frac{\langle \mathbf {u}_j,\mathbf {u}_j\rangle }{\Vert \mathbf {u}_j\Vert _{\mathbb {H}}}=\Vert \mathbf {u}_j\Vert _{\mathbb {H}}, \end{aligned}$$

implying

$$\begin{aligned} \Vert \mathbf {u}_j\Vert _{\mathbb {H}}=\mathbf {q}_{j+1}^{*}\mathbf {u}_j=\langle \mathbf {q}_{j+1},\mathbf {u}_j\rangle =\langle \mathbf {q}_{j+1},A\mathbf {q}_j\rangle . \end{aligned}$$
(A.2)

From (A.1), (A.2), we have

$$\begin{aligned} \begin{aligned} A\mathbf {q}_j&=\mathbf {u}_j+\sum ^{j}_{i=1}\mathbf {q}_i\langle \mathbf {q}_i,A\mathbf {q}_j\rangle \\&=\mathbf {q}_{j+1}\Vert \mathbf {u}_j\Vert _{\mathbb {H}} +\sum ^{j}_{i=1}\mathbf {q}_i\langle \mathbf {q}_i,A\mathbf {q}_j\rangle \\&=\mathbf {q}_{j+1}\langle \mathbf {q}_{j+1},\mathbf {u}_j\rangle +\sum ^{j}_{i=1}\mathbf {q}_i\langle \mathbf {q}_i,A\mathbf {q}_j\rangle \\&=\sum ^{j+1}_{i=1}\mathbf {q}_i\langle \mathbf {q}_i,A\mathbf {q}_j\rangle \\&=\sum ^{j+1}_{i=1}\mathbf {q}_i h_{ij}, \end{aligned} \end{aligned}$$

where \(h_{ij}=\langle \mathbf {q}_i, A\mathbf {q}_j\rangle \)\( (1\le i \le j+1)\) and \(h_{j+1,j}=\Vert \mathbf {u}_j\Vert _{\mathbb {H}} \in \mathbb {R}\). Then

$$\begin{aligned} A\mathbf {q}_j=\begin{pmatrix} \mathbf {q}_1&\mathbf {q}_2&\ldots&\mathbf {q}_j \end{pmatrix} \begin{pmatrix} h_{1j}\\ h_{2j}\\ \vdots \\ h_{jj} \end{pmatrix} +\mathbf {q}_{j+1}h_{j+1,j}, \end{aligned}$$

and,

$$\begin{aligned} \begin{aligned} AQ_k&=\begin{pmatrix} A\mathbf {q}_1&A\mathbf {q}_2&\ldots&A\mathbf {q}_k \end{pmatrix} \\&=\begin{pmatrix} \mathbf {q}_1&\mathbf {q}_2&\ldots&\mathbf {q}_k \end{pmatrix} \begin{pmatrix} h_{11}&{}h_{12} &{}h_{13}&{} \ldots &{} h_{1k}\\ h_{21}&{}h_{22}&{}h_{23}&{}\ldots &{} h_{2k}\\ 0 &{}h_{32}&{}\ldots &{}\ddots &{} h_{3k}\\ \vdots &{}\ddots &{}\ddots &{}\ddots &{}\vdots \\ 0&{}\ldots &{} 0&{}h_{k,k-1}&{}h_{kk} \end{pmatrix} +\begin{pmatrix} \mathbf {0}&\ldots&\mathbf {0}&\mathbf {q}_{k+1}h_{k+1,k} \end{pmatrix}\\&=Q_k H_k +\mathbf {q}_{k+1}h_{k+1,k}\mathbf {e}_{k}^{T}\\&=Q_{k+1} \tilde{H}_k, \end{aligned} \end{aligned}$$

where \( Q_{k}^{*}Q_k=I_k\), and

$$\begin{aligned} \tilde{H}_k=\begin{pmatrix} H_k\\ h_{k+1,k}\mathbf {e}_{k}^{T} \end{pmatrix}=\begin{pmatrix} h_{11}&{}h_{12} &{}h_{13}&{} \ldots &{} h_{1k}\\ h_{21}&{}h_{22}&{}h_{23}&{}\ldots &{} h_{2k}\\ 0 &{}h_{32}&{}\ldots &{}\ddots &{} h_{3k}\\ \vdots &{}\ddots &{}\ddots &{}\ddots &{}\vdots \\ 0&{}\ldots &{} 0&{}h_{k,k-1}&{}h_{kk}\\ 0&{}\ldots &{}\ldots &{} 0 &{} h_{k+1,k} \end{pmatrix}. \end{aligned}$$
(A.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QW., Wang, XX. Arnoldi Method for Large Quaternion Right Eigenvalue Problem. J Sci Comput 82, 58 (2020). https://doi.org/10.1007/s10915-020-01158-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01158-4

Keywords

Mathematics Subject Classification

Navigation