Skip to main content
Log in

Generalized Sensitivity Parameter Free Fifth Order WENO Finite Difference Scheme with Z-Type Weights

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A modified fifth order Z-type (nonlinear) weights, which consist of a linear term and a nonlinear term, in the weighted essentially non-oscillatory (WENO) polynomial reconstruction procedure for the WENO-Z finite difference scheme in solving hyperbolic conservation laws is proposed. The nonlinear term is modified by a modifier function that is based on the linear combination of the local smoothness indicators. The WENO scheme with the modified Z-type weights (WENO-D) scheme and its improved version (WENO-A) scheme are proposed. They are analyzed for the maximum error and the order of accuracy for approximating the derivative of a smooth function with high order critical points, where the first few consecutive derivatives vanish. The analysis and numerical experiments show that, they achieve the optimal (fifth) order of accuracy regardless of the order of critical point with an arbitrary small sensitivity parameter, aka, satisfy the Cp-property. Furthermore, with an optimal variable sensitivity parameter, they have a quicker convergence and a significant error reduction over the WENO-Z scheme. They also achieve an improved balance between the linear term, which resolves a smooth function with the fifth order upwind central scheme, and the modified nonlinear term, which detects potential high gradients and discontinuities in a non-smooth function. The performance of the WENO schemes, in terms of resolution, essentially non-oscillatory shock capturing and efficiency, are compared by solving several one- and two-dimensional benchmark shocked flows. The results show that they perform overall as well as, if not slightly better than, the WENO-Z scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. A stands for Abarbanel of the late Professor Saul Abarbanel.

References

  1. Aràndiga, F., Baeza, A., Belda, A.M., Mulet, P.: Analysis of WENO schemes for full and global accuracy. SIAM J. Numer. Anal. 49(2), 893–915 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aràndiga, F., Martí, M.C., Mulet, P.: Weights design for maximal order WENO schemes. J. Sci. Comput. 60(3), 641–659 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banks, J.W., Henshaw, W.D.: Upwind schemes for the wave equation in second-order form. J. Comput. Phys. 231(17), 5854–5889 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beljadid, A., Mohammadian, A., Kurganov, A.: Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows. Comput. Fluids 136, 193–206 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borges, R., Carmona, M., Costa, B., Don, W.S.: Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system. M2AN Math. Model. Numer. Anal. 45(3), 423–446 (2011)

    Article  MathSciNet  Google Scholar 

  7. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230(5), 1766–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Don, W.S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan, P., Shen, Y., Tian, B., Yang, C.: A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. J. Comput. Phys. 269, 329–354 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, Z., Don, W.S., Li, Z.: High order weighted essentially non-oscillation schemes for one-dimensional detonation wave simulations. J. Comput. Math. 29(6), 623–638 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, Z., Don, W.S., Li, Z.: High order weighted essentially non-oscillation schemes for two-dimensional detonation wave simulations. J. Sci. Comput. 53(1), 80–101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207(2), 542–567 (2005)

    Article  MATH  Google Scholar 

  14. Hu, X.Y., Wang, Q., Adams, N.A.: An adaptive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229(23), 8952–8965 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, G.S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, Y., Shu, C.-W., Zhang, M.: An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35(2), A1137–A1160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiang, Y., Shu, C.-W., Zhang, M.: Free-stream preserving finite difference schemes on curvilinear meshes. Methods Appl. Anal. 21(1), 1–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lax, P.D., Liu, X.-D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319–340 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, H.: A numerical study of the performance of alternative weighted ENO methods based on various numerical fluxes for conservation law. Appl. Math. Comput. 296, 182–197 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shi, J., Zhang, Y.-T., Shu, C.-W.: Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186(2), 690–696 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. NASA/CR-97-206253 ICASE Report No. 97–65 (1997)

  23. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations: Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)

    Chapter  Google Scholar 

  24. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Titarev, V.A., Toro, E.F.: Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201(1), 238–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, B.-S., Li, P., Gao, Z., Don, W.S.: An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws. J. Comput. Phys. 374, 469–477 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yamaleev, N.K., Carpenter, M.H.: Third-order energy stable WENO scheme. J. Comput. Phys. 228(8), 3025–3047 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17(1), 27–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yee, H.C., Sandham, N.D., Djomehri, M.J.: Low dissipative high order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150(1), 199–238 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhong, X., Shu, C.-W.: Numerical resolution of discontinuous Galerkin methods for time dependent wave equations. Comput. Method Appl. Mech. Eng. 200(41–44), 2814–2827 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding support of this research by the National Natural Science Foundation of China (11871443), National Science and Technology Major Project (20101010), Shandong Provincial Natural Science Foundation (ZR2017MA016) and Fundamental Research Funds for the Central Universities (201562012). The author (Don) also likes to thank the Ocean University of China for providing the startup funding (201712011) that is used in supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai Sun Don.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All authors contributed equally in this scholarly research and article.

Appendix A: Taylor Expansions of \(\phi , \tau , \beta _k\)

Appendix A: Taylor Expansions of \(\phi , \tau , \beta _k\)

The Taylor series expansions of \(\phi ^2\) at \(x_i\) is

$$\begin{aligned} \phi ^{2}= & {} \left| - \left( 2 f^{(1)}_i f^{(3)}_i \right) \Delta x^4 + \left( -\frac{1}{2} f^{(1)}_i f^{(5)}_i + \frac{13}{6} f^{(2)}_i f^{(4)}_i + \frac{7}{3} f^{(3)}_if^{(3)}_i\right) \Delta x^6 \right| \\&+\,O({\Delta x}^8) . \end{aligned}$$

The Taylor series expansions of \(\tau _5\) at \(x_i\) is

$$\begin{aligned} \tau _5= & {} \left| \left( f^{(1)}_i f^{(4)}_i-\frac{13}{3} f^{(2)}_i f^{(3)}_i \right) \Delta x^5 + \left( \frac{1}{6}f^{(1)}_if^{(6)}_i - \frac{13}{12} f^{(2)}_i f^{(5)}_i -\frac{103}{36} f^{(3)}_i f^{(4)}_i\right) \Delta x^7 \right| \\&+\,O( \Delta x^{9}). \end{aligned}$$

The Taylor series expansions of \(\beta _k\) at \(x_i\) are

$$\begin{aligned} \beta _0= & {} f^{(1)}_if^{(1)}_i \Delta x^2 + \left( \frac{13}{12} f^{(2)}_if^{(2)}_i - \frac{2}{3} f^{(1)}_i f^{(3)}_i \right) \Delta x^4 \\&- \left( \frac{13}{6} f^{(2)}_if^{(3)}_i - \frac{1}{2} f^{(1)}_i f^{(4)}_i \right) \Delta x^5 \\&-\left( \frac{7}{30} f^{(1)}_if^{(5)}_i - \frac{91}{72} f^{(2)}_i f^{(4)}_i- \frac{43}{36} f^{(3)}_if^{(3)}_i\right) \Delta x^6 \\&+\left( \frac{1}{12} f^{(1)}_if^{(6)}_i - \frac{13}{24} f^{(2)}_i f^{(5)}_i- \frac{103}{72} f^{(3)}_if^{(4)}_i\right) \Delta x^7 + O({\Delta x}^8) , \\ \beta _1= & {} f^{(1)}_if^{(1)}_i \Delta x^2 + \left( \frac{13}{12} f^{(2)}_if^{(2)}_i + \frac{1}{3} f^{(1)}_i f^{(3)}_i \right) \Delta x^4 \\&+\left( \frac{1}{60} f^{(1)}_i f^{(5)}_i+ \frac{13}{72} f^{(2)}_if^{(4)}_i + \frac{1}{36} f^{(3)}_if^{(3)}_i\right) \Delta x^6 + O( \Delta x^{8} )\\ \beta _2= & {} f^{(1)}_if^{(1)}_i \Delta x^2 + \left( \frac{13}{12} f^{(2)}_if^{(2)}_i - \frac{2}{3} f^{(1)}_i f^{(3)}_i \right) \Delta x^4 \\&+ \left( \frac{13}{6} f^{(2)}_if^{(3)}_i - \frac{1}{2} f^{(1)}_i f^{(4)}_i \right) \Delta x^5 \\&-\left( \frac{7}{30}f^{(1)}_if^{(5)}_i -\frac{91}{72} f^{(2)}_if^{(4)}_i - \frac{43}{36} f^{(3)}_if^{(3)}_i\right) \Delta x^6 \\&-\left( \frac{1}{12}f^{(1)}_if^{(6)}_i -\frac{13}{24} f^{(2)}_if^{(5)}_i - \frac{103}{72} f^{(3)}_i f^{(4)}_i \right) \Delta x^7 + O({\Delta x}^8) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, BS. & Don, W.S. Generalized Sensitivity Parameter Free Fifth Order WENO Finite Difference Scheme with Z-Type Weights. J Sci Comput 81, 1329–1358 (2019). https://doi.org/10.1007/s10915-019-00998-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00998-z

Keywords

Mathematics Subject Classification

Navigation