Skip to main content
Log in

Error Analysis of a Fully Discrete Morley Finite Element Approximation for the Cahn–Hilliard Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper proposes and analyzes the Morley element method for the Cahn–Hilliard equation. It is a fourth order nonlinear singular perturbation equation arises from the binary alloy problem in materials science, and its limit is proved to approach the Hele-Shaw flow. If the \(L^2(\Omega )\) error estimate is considered directly as in paper [14], we can only prove that the error bound depends on the exponential function of \(\frac{1}{\epsilon }\). Instead, this paper derives the error bound which depends on the polynomial function of \(\frac{1}{\epsilon }\) by considering the discrete \(H^{-1}\) error estimate first. There are two main difficulties in proving this polynomial dependence of the discrete \(H^{-1}\) error estimate. Firstly, it is difficult to prove discrete energy law and discrete stability results due to the complex structure of the bilinear form of the Morley element discretization. This paper overcomes this difficulty by defining four types of discrete inverse Laplace operators and exploring the relations between these discrete inverse Laplace operators and continuous inverse Laplace operator. Each of these operators plays important roles, and their relations are crucial in proving the discrete energy law, discrete stability results and error estimates. Secondly, it is difficult to prove the discrete spectrum estimate in the Morley element space because the Morley element space intersects with the \(C^1\) conforming finite element space but they are not contained in each other. Instead of proving this discrete spectrum estimate in the Morley element space, this paper proves a generalized coercivity result by exploring properties of the enriching operators and using the discrete spectrum estimate in its \(C^1\) conforming relative finite element space, which can be obtained by using the spectrum estimate of the Cahn–Hilliard operator. The error estimate in this paper provides an approach to prove the convergence of the numerical interfaces of the Morley element method to the interface of the Hele-Shaw flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, vol. 140. Academic press, London (2003)

    MATH  Google Scholar 

  2. Alikakos, N.D., Bates, P.W., Chen, X.: Convergence of the Cahn–Hilliard equation to the Hele-Shaw model. Arch. Ration. Mech. Anal. 128(2), 165–205 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084–1095 (1979)

    Article  Google Scholar 

  4. Aristotelous, A.C., Karakashian, O., Wise, S.M.: A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn–Hilliard equation. Discount. Cont. Dyn. Syst. Ser. B 18(9), 2211–2238 (2013)

    Article  MATH  Google Scholar 

  5. Bartels, S., Müller, R., Ortner, C.: Robust a priori and a posteriori error analysis for the approximation of Allen–Cahn and Ginzburg–Landau equations past topological changes. SIAM J. Numer. Anal. 49(1), 110–134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bazeley, G.P., Cheung, Yo.K., Irons, B.M., Zienkiewicz, O.C.: Triangular elements in plate bending- conforming and non-conforming solutions (Stiffness characteristics of triangular plate elements in bending, and solutions). pp. 547–576 (1966)

  7. Riviere, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. SIAM (2008)

  8. Brenner, S.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. Am. Math. Soc. 65(215), 897–921 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.: Convergence of nonconforming multigrid methods without full elliptic regularity. Math. Comput. Am. Math. Soc. 68(225), 25–53 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C., Sung, L., Zhang, H., Zhang, Y.: A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254, 31–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, X.: Spectrum for the Allen–Cahn and Cahn–Hilliard and phase-field equations for generic interfaces. Commun. Partial Differ. Equ. 19(7–8), 1371–1395 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. (in press) (2017). arXiv preprint arXiv:1712.06210

  13. Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn–Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feng, X., Li, Y.: Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen–Cahn equation and the mean curvature flow. IMA J. Numer. Anal. 35(4), 1622–1651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, X., Li, Y., Prohl, A.: Finite element approximations of the stochastic mean curvature flow of planar curves of graphs. Stoch. Partial Differ. Equ. Anal. Comput. 2(1), 54–83 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Feng, X., Li, Y., Xing, Y.: Analysis of mixed interior penalty discontinuous galerkin methods for the Cahn–Hilliard equation and the Hele-Shaw flow. SIAM J. Numer. Anal. 54(2), 825–847 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feng, X., Li, Y., Zhang, Y.: Finite element methods for the stochastic Allen–Cahn equation with gradient-type multiplicative noise. SIAM J. Numer. Anal. 55(1), 194–216 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng, X., Prohl, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94, 33–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 74, 47–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng, X., Prohl, A.: Numerical analysis of the Cahn–Hilliard equation and approximation for the Hele-Shaw problem. Int Free Bound. 7, 1–28 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Feng, X., Wu, H.: A posteriori error estimates and an adaptive finite element method for the Allen–Cahn equation and the mean curvature flow. J. Sci. Comput. 24(2), 121–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ilmanen, T.: Convergence of the Allen–Cahn equation to Brakke’s motion by mean curvature. J. Diff. Geom. 38(2), 417–461 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kovács, M., Larsson, S., Mesforush, A.: Finite element approximation of the Cahn–Hilliard–Cook equation. SIAM J. Numer. Anal. 49(6), 2407–2429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem, Revue française d’automatique, informatique, recherche opérationnelle. Anal. Numér. 9(R1), 9–53 (1975)

    MathSciNet  MATH  Google Scholar 

  26. Li, Y.: Numerical methods for deterministic and stochastic phase field models of phase transition and related geometric flows. Ph.D. thesis, The University of Tennessee (2015)

  27. Nilssen, T., Tai, X.-C., Winther, R.: A robust nonconforming \(H^2\)-element. Math. Comput. 70(234), 489–505 (2001)

    Article  MATH  Google Scholar 

  28. Pachpatte, B.G.: Inequalities for Finite Difference Equations. Pure and Applied Mathematics, vol. 247. CRC Press, Boca Raton (2011)

    Google Scholar 

  29. Stoth, B.E.E.: Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry. J. Diff. Eqs. 125(1), 154–183 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, M.: On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements. SIAM journal on numerical analysis 39(2), 363–384 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, M., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numerische Mathematik 103(1), 155–169 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, Shuonan, Li, Yukun: Analysis of the Morley elements for the Cahn-Hilliard equation and the Hele-Shaw flow, (2018). submitted, arXiv preprint arXiv:1808.08581

  33. Xu, Jinchao, Li, Yukun, Wu, Shuonan: Convex splitting schemes interpreted as fully implicit schemes in disguise for phase field modeling. Computer Methods in Applied Mechanics and Engineering, accepted (2016). arXiv preprint arXiv:1604.05402

Download references

Acknowledgements

The author Yukun Li highly thanks Professor Xiaobing Feng in the University of Tennessee at Knoxville for his valuable suggestions during the whole process of preparation of this manuscript, and Dr. Shuonan Wu in the Peking University for proofreading this manuscript carefully and giving lots of useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y. Error Analysis of a Fully Discrete Morley Finite Element Approximation for the Cahn–Hilliard Equation. J Sci Comput 78, 1862–1892 (2019). https://doi.org/10.1007/s10915-018-0834-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0834-3

Keywords

Mathematics Subject Classification

Navigation