Skip to main content
Log in

V-cycle Multigrid Algorithms for Discontinuous Galerkin Methods on Non-nested Polytopic Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we analyze the convergence properties of V-cycle multigrid algorithms for the numerical solution of the linear system of equations stemming from discontinuous Galerkin discretization of second-order elliptic partial differential equations on polytopic meshes. Here, the sequence of spaces that stands at the basis of the multigrid scheme is possibly non-nested and is obtained based on employing agglomeration algorithms with possible edge/face coarsening. We prove that the method converges uniformly with respect to the granularity of the grid and the polynomial approximation degree p, provided that the minimum number of smoothing steps, which depends on p, is chosen sufficiently large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Antonietti, P.F., Ayuso de Dios, B.: Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case. Math. Model. Numer. Anal. 41(1), 21–54 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonietti, P.F., Ayuso de Dios, B.: Multiplicative Schwarz methods for discontinuous Galerkin approximations of elliptic problems. Math. Model. Numer. Anal. 42(3), 443–469 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonietti, P.F., Brezzi, F., Marini, L.D.: Bubble stabilization of discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 198(21–26), 1651–1659 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antonietti, P.F., Facciolà, C., Russo, A., Verani, M.: Discontinuous Galerkin approximation of flows in fractured porous media. MOX report 55/2016 (2016, Submitted)

  5. Antonietti, P.F., Giani, S., Houston, P.: \(hp\)-version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35(3), A1417–A1439 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Antonietti, P.F., Giani, S., Houston, P.: Domain decomposition preconditioners for discontinuous Galerkin methods for elliptic problems on complicated domains. J. Sci. Comput. 60(1), 203–227 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Antonietti, P.F., Houston, P.: A class of domain decomposition preconditioners for \(hp\)-discontinuous Galerkin finite element methods. J. Sci. Comput. 46(1), 124–149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Antonietti, P.F., Houston, P., Hu, X., Sarti, M., Verani, M.: Multigrid algorithms for \(hp\)-version interior penaty discontinuous Galerkin methods on polygonal and polyhedral meshes. Calcolo 54(4), 1169–1198 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Antonietti, P.F., Houston, P., Smears, I.: A note on optimal spectral bounds for nonoverlapping domain decomposition preconditioners for \(hp\)-version discontinuous Galerkin methods. Int. J. Numer. Methods Eng. 13(4), 513–524 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Antonietti, P.F., Mazzieri, I.: DG methods for the elastodynamics equations on polygonal/polyhedral grids. MOX report 06/2018 (2018, Submitted )

  11. Antonietti, P.F., Sarti, M., Verani, M.: Multigrid algorithms for \(hp\)-discontinuous Galerkin discretizations of elliptic problems. SIAM J. Numer. Anal. 53(1), 598–618 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ayuso de Dios, B., Zikatanov, L.: Uniformly convergent iterative methods for discontinuous Galerkin discretizations. J. Sci. Comput. 40(1–3), 4–36 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31(137), 45–59 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bank, R.E., Dupont, T.: An optimal order process for solving finite element equations. Math. Comput. 36(153), 35–51 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bassi, F., Botti, L., Colombo, A., Brezzi, F., Manzini, G.: Agglomeration-based physical frame dG discretizations: an attempt to be mesh free. Math. Models Methods Appl. Sci. 24(8), 1495–1539 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bassi, F., Botti, L., Colombo, A., Rebay, S.: Agglomeration based discontinuous Galerkin discretization of the Euler and Navier–Stokes equations. Comput. Fluids 61, 77–85 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Braess, D., Verfürth, R.: Multigrid methods for nonconforming finite element methods. SIAM J. Numer. Anal. 22(4), 979–986 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bramble, J.H.: Multigrid Methods (Pitman Research Notes in Mathematics Series). Longman Scientific and Technical, New York (1993)

    Google Scholar 

  22. Bramble, J.H., Kwak, D.Y., Pasciak, J.E.: Uniform convergence of multigrid \(V\)-cycle iterations for indefinite and nonsymmetric problems. SIAM J. Numer. Anal. 31(6), 1746–1763 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bramble, J.H., Pasciak, J.E.: The analysis of smoothers for multigrid algorithms. Math. Comput. 58(198), 467–488 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bramble, J.H., Pasciak, J.E.: New estimates for multilevel algorithms including the \(V\)-cycle. Math. Comput. 60(202), 447–471 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Bramble, J.H., Pasciak, J.E.: Uniform convergence estimates for multigrid \(V\)-cycle algorithms with less than full elliptic regularity. SIAM J. Numer. Anal. 31(6), 1746–1763 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bramble, J.H., Pasciak, J.E., Xu, J.: The analysis of multigrid algorithms with nonnested space or noninherited quadratic forms. Math. Comput. 56(193), 1–34 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bramble, J.H., Zhang, X.: Uniform convergence of the multigrid \(V\)-cycle for an anisotropic problem. Math. Comput. 70(234), 453–470 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Brenner, S.C., Cui, J., Gudi, T., Sung, L.-Y.: Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes. Numer. Math. 119(1), 21–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Brenner, S.C., Cui, J., Sung, L.-Y.: Multigrid methods for the symmetric interior penalty method on graded meshes. Numer. Linear Algebra Appl. 16(6), 481–501 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Brenner, S.C., Owens, L.: A \(W\)-cycle algorithm for a weakly over-penalized interior penalty method. Comput. Methods Appl. Mech. Eng. 196(37–40), 3823–3832 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Brenner, S.C., Park, E.-H., Sung, L.-Y.: A balancing domain decomposition by constraints preconditioner for a weakly over-penalized symmetric interior penalty method. Numer. Linear Algebra Appl. 20(3), 472–491 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cangiani, A., Dong, Z., Georgoulis, E.H.: \(hp\)-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. 39(4), A1251–A1279 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: \(hp\)-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM Math. Model. Numer. Anal. 50(3), 699–725 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cangiani, A., Georgoulis, E.H., Houston, P.: \(hp\)-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10), 2009–2041 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chan, T.F., Xu, J., Zikatanov, L.: An agglomeration multigrid method for unstructured grids. Contemp. Math. 218, 67–81 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin Methods. Theory, Computation and Applications. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  37. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin (2011)

    MATH  Google Scholar 

  38. Dobrev, V.A., Lazarov, R.D., Vassilevski, P.S., Zikatanov, L.: Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations. Numer. Linear Algebra Appl. 13(9), 753–770 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dryja, M.: On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients. Comput. Methods Appl. Mat. 3(1), 76–85 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Dryja, M., Galvis, J., Sarkis, M.: BDDC methods for discontinuous Galerkin discretization of elliptic problems. J. Complex. 23, 715–739 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dryja, M., Krzyżanowski, P., Sarkis, M.: Additive Schwarz method for dG discretization of anisotropic elliptic problems. Lect. Notes Comput. Sci. Eng. 98, 407–415 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dryja, M., Sarkis, M.: Additive average Schwarz methods for discretization of elliptic problems with highly discontinuous coefficients. Comput. Methods Appl. Math. 10(2), 164–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Duan, H.Y., Gao, S.Q., Tan, R.C.E., Zhang, S.: A generalized BPX multigrid framework covering nonnested \(V\)-cycle methods. Math. Comput. 76(257), 137–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Feng, X., Karakashian, O.A.: Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 39(4), 1343–1365 (2001). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  45. Feng, X., Karakashian, O.A.: Analysis of two-level overlapping additive Schwarz preconditioners for a discontinuous Galerkin method. In: Domain Decomposition Methods in Science and Engineering (Lyon, 2000), Theory Eng. Appl. Comput. Methods, pp. 237–245. Internat. Center Numer. Methods Eng. (CIMNE), Barcelona (2002)

  46. Feng, X., Karakashian, O.A.: Two-level non-overlapping Schwarz preconditioners for a discontinuous Galerkin approximation of the biharmonic equation. J. Sci. Comput. 22(23), 289–314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Georgoulis, E.H., Suli, E.: Optimal error estimates for the \(hp\)-version interior penalty discontinuous Galerkin finite element method. IMA J. Numer. Anal. 25(1), 205–220 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Giani, S., Houston, P.: Domain decomposition preconditioners for discontinuous Galerkin discretizations of compressible fluid flows. Numer. Math. Theory Methods Appl. 7(2), 123–148 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Giani, S., Houston, P.: \(hp\)-adaptive composite discontinuous Galerkin methods for elliptic problems on complicated domains. Numer. Methods Part. Differ. Equ. 30(4), 1342–1367 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Gopalakrishnan, J., Kanschat, G.: A multilevel discontinuous Galerkin method. Numer. Math. 95(3), 527–550 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Gopalakrishnan, J., Pasciak, J.E.: Multigrid for the Mortar finite element method. SIAM J. Numer. Anal. 37(3), 1029–1052 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, 1st edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  53. Holz, S.: Polygon clipper. https://it.mathworks.com/matlabcentral/fileexchange/8818-polygon-clipper

  54. Karakashian, O.A., Collins, C.: Two-level additive Schwarz methods for discontinuous Galerkin approximations of second-order elliptic problems. IMA J. Numer. Anal. 37(4), 1800–1830 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Karypis, G., Kumar, V.: Metis: Unstructured graph partitioning and sparse matrix ordering system, version 4.0. http://www.cs.umn.edu/~metis (2009)

  56. Ladson, C.L., Jr., C.W.: Brooks. Development of a computer program to obtain ordinates for NACA 6- and 6A-series airfoils. NASA Technical Memorandum X-3069 (1974)

  57. Lipnikov, K., Vassilev, D., Yotov, I.: Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids. Numer. Math. 126(2), 321–360 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Persson, P.O., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46(2), 329–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  59. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  60. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  61. Scott, L.R., Zhang, S.: Higher-dimensional nonnested multigrid methods. Math. Comput. 58(198), 457–466 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  62. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  63. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: Polymesher: a general-purpose mesh generator for polygonal elements written in MATLAB. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Toselli, A., Widlund, O.B.: Domain Decomposition Methods—Algorithms and Theory. Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2004)

    MATH  Google Scholar 

  65. Wheeler, M.F.: An elliptic collocation finite element method with interior penalties. SIAM J. Numer. Anal. 15(1), 152–161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  66. Wiresaet, D., Kubatko, E.J., Michoski, C.E., Tanaka, S., Westerink, J.J., Dawson, C.: Discontinuous Galerkin methods with nodal and hybrid modal/nodal triangular, quadrilateral, and polygonal elements for nonlinear shallow water flow. Comput. Methods Appl. Mech. Eng. 270, 113–149 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  67. Xu, X., Chen, J.: Multigrid for the mortar element method for \(P1\) nonconforming element. Numer. Math. 88(2), 381–389 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  68. Xu, X., Li, L., Chen, W.: A multigrid method for the Mortar-type Morley element approximation of a plate bending problem. SIAM J. Numer. Anal. 39(5), 1712–1731 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhang, S.: Optimal-order nonnested multigrid methods for solving finite element equations I: on quasi-uniform meshes. Math. Comput. 55(191), 23–36 (1990)

    MathSciNet  MATH  Google Scholar 

  70. Zhang, S., Zhang, Z.: Treatments of discontinuity and bubble functions in the multigrid method. Math. Comput. 66(219), 1055–1072 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous Reviewers for their valuable comments and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pennesi.

Additional information

This work has been supported by the research grant PolyNuM founded by Fondazione Cariplo and Regione Lombardia, and by the SIR Project No. RBSI14VT0S funded by MIUR.

Appendix: Proof of Lemma 7

Appendix: Proof of Lemma 7

In order to show Lemma 7, we follow the analysis presented in [43]. We first show two preliminary results making use of the properties of Sect. 3.

Lemma 8

Let Assumptions 14 hold and let \({\widetilde{\varPi }}_j\) be the projection operator on \(V_j\) as defined in Lemma 4, for \(j=J,J-1\). Then

Proof

Using the triangular inequality, Remark 7 and the approximation estimates of Lemma 4 we have:

where in the last inequality we also used hypotheses (3) and (4). \(\square \)

Lemma 9

Let Assumptions 14 hold. Let and denote by \(w_j \in V_j\) the solution of \(\forall v \in V_j\) with \(j=J-1,J\). Then the following inequality holds:

(28)

Proof

Consider the unique solution \(w \in V\) of the problem

$$\begin{aligned} \mathcal {A}(w,v) = (g,v)_{L^2(\varOmega )} \quad \forall v \in V. \end{aligned}$$

Using Corollary 1, we have

(29)

Using the triangular inequality and Remark 7 we have:

Using (29), Lemmas 4 and 8, we have

From the elliptic regularity assumption (2) and hypotheses (3) and (4), we can write

(30)

Now, let \(z_j \in V_j\) be the solution of:

Using (30) we get the following estimate:

Then, we have:

from which, together with (30), inequality (28) follows. \(\square \)

Proof (of Lemma 7)

For any \(v_J \in V_J\) we consider the following equality:

(31)

Next, consider the solution \(z_j\) of the following problems

By using the definition of \(P_J^{J-1}\) and Lemma 9, we have:

Using the last inequality together with (31) we get (26). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonietti, P.F., Pennesi, G. V-cycle Multigrid Algorithms for Discontinuous Galerkin Methods on Non-nested Polytopic Meshes. J Sci Comput 78, 625–652 (2019). https://doi.org/10.1007/s10915-018-0783-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0783-x

Keywords

Mathematics Subject Classification

Navigation