Skip to main content
Log in

Least-Squared Mixed Variational Formulation Based on Space Decomposition for a Kind of Variable-Coefficient Fractional Diffusion Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we decompose the fractional derivative space as the direct-sum of a fractional Sobolev space and a singular space spanned by \(x^{-\beta }\) and then propose a \(x^{-\beta }\)-independent mixed type variational formulation over the commonly used Sobolev spaces for a kind of variable-coefficient fractional diffusion equations, based on the least-squared techniques and the merits of the direct-sum decomposition. We then prove the existence and uniqueness of the variational formulation, show the equivalence between the variational formulation and the fractional diffusion equation and discuss the regularity of the solution to the equation with a general right hand side function. As a consequence, an easily-computed and optimal-order-convergent least-squared mixed finite element method is established. The optimal-order numerical analysis with supporting numerical experiments is also conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askey, R., Fitch, J.: Integral representations for Jacobi polynomials and some applications. J. Math. Anal. Appl. 26(2), 411–437 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of L\(\acute{e}\)vy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  4. Chen, H.Z., Wang, H.: Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation. J. Comp. Appl. Math. 296, 480–498 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  6. Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math. Model. Numer. Anal. 47, 1845–1864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in \(R^d\). Numer. Methods Partial Differ. Equ. 23, 256–281 (2007)

    Article  MATH  Google Scholar 

  11. Fix, G.J., Roop, J.P.: Least squares finite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48, 1017–1033 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gorenflo, R., Fabritiis, G.D., Mainardi, F.: Discrete random walk models for symmetric Levy-Feller diffusion processes. Phys. A. 269, 79–89 (1999)

    Article  MathSciNet  Google Scholar 

  13. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  14. Jia, J.H., Wang, H.: A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J. Comput. Phys. 299(15), 842–862 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jia, L.L., Chen, H.Z., Wang, H.: Mixed-type Galerkin variational principle and numerical simulation for a generalized nonlocal elastic model. J. Sci. Comput. 71, 660–681 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jin, B.T., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84, 2665–2700 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, B.T., Lazarov, R., Zhou, Z.: A Petrov–Galerkin finite element method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 54, 481–503 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jin, B.T., Lazarov, R., Lu, X.L., Zhou, Z.: A simple finite element method for boundary value problems with a Riemann-Liouville derivative. J. Comput. Appl. Math. 293, 94–111 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin, B.T., Zhou, Z.: A finite element method with singularity reconstruction for fractional boundary value problems. ESAIM Math. Model. Numer. Anal. 49, 1261–1283 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klafter, J., Sokolov, I.M.: Anomalous diffusion spreads its wings. Phys. World. 18(8), 29–32 (2005)

    Article  Google Scholar 

  21. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Y.S., Chen, H.Z., Wang, H.: A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math. Method Appl. Sci. 40, 5018–5034 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)

    Book  MATH  Google Scholar 

  24. Mao, Z.P., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meerschaert, M.M., Tadjeran, C.: Finite difference approximation for two-sided space-fractional partial differential equations. J. Appl. Math. 56, 80–90 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Nie, N., Huang, J., Wang, W., Tang, Y.: Solving spatial-fractional partial differential diffusion equations by spectral method. J. Stat. Comput. Simul. 84, 1173–1189 (2014)

    Article  MathSciNet  Google Scholar 

  27. Pan, J., Ng, M.K., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2806–A2826 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pang, H.K., Sun, H.W.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  30. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993)

    MATH  Google Scholar 

  31. Scher, H.E., Montroll, W.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B. 12(6), 2455–2477 (1975)

    Article  Google Scholar 

  32. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  33. Sobolev, R.A., Fournier, J.F.: Sobolev Spaces. Elsevier, Singapore (2009)

    Google Scholar 

  34. Szego, G.: Orthogonal Polynomials. American Mathematical Society Colloquium Publications, vol. 23. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  35. Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, H., Yang, D.P.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51(2), 1088–1107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, H., Yang, D.P., Zhu, S.F.: A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput. Methods Appl. Mech. Eng. 290, 45–56 (2015)

    Article  MathSciNet  Google Scholar 

  38. Wheatcraft, S.W., Meerschaert, M.M.: Fractional conservation of mass. Adv. Water. Resour. 31, 1377–1381 (2008)

    Article  Google Scholar 

  39. Yang, D. P., Wang, H.: Wellposedness and regularity of steady-state two-sided variable-coefficient conservative space-fractional diffusion equations. arXiv:1606.04912 [math.NA] (2016)

  40. Yang, Q., Turner, I., Moroney, T., Liu, F.: A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations. Appl. Math. Model. 38, 3755–3762 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, Y., Benson, D.A., Meerschaert, M.M., Scheffler, H.P.: On using random walks to solve the space-fractional advection-dispersion equations. J. Stat. Phys. 123, 89–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank sincerely the anonymous referees for their valuable suggestions which highly improve the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanzhen Chen.

Additional information

This work is supported in part by the National Natural Science Foundation of Grant Nos.11471196, 11471194, 10971254, 11301311, 91130010, 11571115, 11171193 and by the National Science Foundation under Grant Nos. EAR-0934747and DMS-1216923 and by the OSD/ARO MURI Grant Nos. W911NF-15-1-0562.

Appendix

Appendix

In this appendix, we first introduce the definitions and notations of the negative fractional spaces and their relations, and then prove the \(H^{\gamma -\beta }(\varOmega )\)-regularity of \(x^{-\beta }\), which is used in the second assertion of Theorem 3.4.

Definition 6.1

(Negative fractional derivative space [4, 6]) For any \(\beta \ge 0\), define space \(J_{L}^{-\beta }(\varOmega )\) as the closure of \(C_0^\infty (\varOmega )\) with respect to the norm \(\Vert \cdot \Vert _{J_{L}^{-\beta }(\varOmega )}\), defined by

$$\begin{aligned} \Vert \mathbf{v}\Vert _{J_{L}^{-\beta }(\varOmega )}:=\Vert _0I_x^{\beta }\mathbf{v}\Vert _{L^2(\varOmega )}. \end{aligned}$$

Definition 6.2

(Negative Sobolev space [13, 23]) For any \(\beta \ge 0\), define space \(H^{-\beta }(\varOmega )\) as the dual space of \(H_0^{\beta }(\varOmega )\).

Lemma 6.1

([4]) For any \(\beta \ge 0\), \(\beta \ne n-\frac{1}{2}\) with \(n\in \mathbb {N}\). Then, the negative fractional derivative space \(J_{L}^{-\beta }(\varOmega )\) and the negative fractional Sobolev space \(H^{-\beta }(\varOmega )\) are equal with equivalent norms.

Now we give the main lemma.

Lemma 6.2

Assume that \(0\le \beta \le 1.\) Then, there exists a real number \(\gamma \) (\(0<\gamma <{1\over 2}\)), which can be selected as close as possible to \(1\over 2\), such that \(x^{-\beta }\in H^{\gamma -\beta }(\varOmega ).\)

Proof

We consider two cases for \(\beta \).

Case (1). As \(0\le \beta <\frac{1}{2}\).

Recalling the definition of fractional Sobolev spaces [23, 33], we know that the norm of \(\mathbf{v}\in H^s(\varOmega )\) for \(0\le s<1\) is defined by

$$\begin{aligned} \begin{array}{lll} \Vert \mathbf{v}\Vert ^2_{H^s(\varOmega )}=\Vert \mathbf{v}\Vert ^2_{L^2(\varOmega )}+\int _0^1\int _0^1\frac{|\mathbf{v}(x)-\mathbf{v}(y)|^2}{|x-y|^{1+2s}}dxdy. \end{array} \end{aligned}$$
(6.1)

Apparently, \(x^{-\beta } \in L^2(\varOmega )\) for \(0\le \beta <{1\over 2},\) then, it suffices to show that the singular integral in (6.1) is finite to draw the conclusion of \(x^{-\beta }\in H^s(\varOmega ).\)

For this purpose, we decompose the integral into two parts:

$$\begin{aligned} \begin{array}{lll} &{}\int _0^1\int _0^1\frac{|x^{-\beta }-y^{-\beta }|^2}{|x-y|^{1+2s}}dxdy\\ &{}\quad =\int _0^1\int _0^y\frac{(x^{-\beta }-y^{-\beta })^2}{(y-x)^{1+2s}}dxdy+\int _0^1\int _y^1 \frac{(x^{-\beta }-y^{-\beta })^2}{(x-y)^{1+2s}}dxdy\\ &{}\quad := I_1+I_2. \end{array} \end{aligned}$$

For \(I_1\), applying the mean value theorem of differentials, changing variables from x to t, then to \(\eta ,\) and tediously calculating, we yield

$$\begin{aligned} I_1= & {} \int _0^1 \int _0^y(y-x)^{-(1+2s)}(\frac{y^\beta -x^\beta }{x^\beta y^\beta })^2dxdy\\= & {} \beta ^2\int _0^1 \int _0^y(y-x)^{-(1+2s)}\{\frac{[ x+\theta (y-x)]^{\beta -1}(y-x)}{x^\beta y^\beta }\}^2 dxdy\\= & {} \int _0^1\frac{\beta ^2 dy }{y^{2s+2\beta +1}}\int _0^y\left( 1-\frac{x}{y}\right) ^{1-2s} \left( \frac{x}{y}\right) ^{-2\beta }\left[ \frac{x}{y}+\theta \left( 1-\frac{x}{y}\right) \right] ^{2\beta -2}dx\\= & {} \int _0^1\frac{\beta ^2 dy}{y^{2(s+\beta )}}\int _0^1(1-t)^{1-2s}t^{-2\beta }[t+\theta (1-t)]^{2\beta -2}dt \left( {\mathrm{let}}\ t=\frac{x}{y}\right) \\= & {} \int _0^1\frac{\beta ^2 dy}{y^{2(s+\beta )}}\int _0^1\eta ^{1-2s}(1-\eta )^{-2\beta } (1-\eta +\theta \eta )^{2\beta -2}d\eta ({\mathrm{let}}\ \eta = 1-t)\\= & {} \int _0^1\frac{\beta ^2 dy}{y^{2(s+\beta )}}\int _0^1\eta ^{1-2s}(1-\eta )^{-2\beta } (1-(1-\theta )\eta )^{2\beta -2}d\eta , \end{aligned}$$

where \(\theta \in (0,1)\) is a mean value constant. Denoting \(z=1-\theta ,\) we find that the inner singular integral is closely related to the well-known Gauss hypergeometric function \({_2F_1}(a,b,c;z)\) with \(a=2-2\beta ,b=2-2s,c=3-2\beta -2s\) and \( z=1-\theta ,\) expressed by [30],

$$\begin{aligned} \begin{array}{lll} \int _0^1\eta ^{1-2s}(1-\eta )^{-2\beta }(1-(1-\theta )\eta )^{2\beta -2}d\eta =\frac{\varGamma (b)\varGamma (c-b)}{\varGamma (c)}{_2F_1}(a,b,c;z). \end{array} \end{aligned}$$

The Gauss hypergeometric function \({_2F_1}(a,b,c;z)\) is convergent since \(0<b<c\) and \(0<z<1,\) and thus the inner singular integral in \(I_1\). As a consequence of the convergence of \({_2F_1}(a,b,c;z)\) , \(I_1\) is finite if and only if \(\int _0^1\frac{1}{y^{2s+2\beta }}dy\) is convergent, which implies equivalently that \(2(s+\beta )<1\) or \(s<\frac{1}{2}-\beta \).

A similar calculation for \(I_2\) shows that

$$\begin{aligned} \begin{array}{ll} I_2&{}=\int _0^1\int _y^1(x-y)^{-(1+2s)}\left( \frac{y^\beta -x^\beta }{x^\beta y^\beta }\right) ^2dxdy\\ &{}=\beta ^2\int _0^1dy\int _y^1(x-y)^{-(1+2s)} \left\{ \frac{[y+\theta (x-y)]^{\beta -1}(x-y)}{x^\beta y^\beta }\right\} ^2dx\\ &{}=\int _0^1\frac{\beta ^2dy}{y^{2s+2\beta +1}} \int _y^1\left( 1-\frac{y}{x}\right) ^{1-2s}\left( \frac{y}{x}\right) ^{1+2s} \left[ \frac{y}{x}+\theta \left( 1-\frac{y}{x}\right) \right] ^{2\beta -2}dx\\ &{}=\int _0^1\frac{\beta ^2dy}{y^{2(s+\beta )}} \int _y^1(1-t)^{1-2s}t^{2s-1}[t+\theta (1-t)]^{2\beta -2}dt \quad \left( {\mathrm{let}}\ t=\frac{y}{x}\right) \\ &{}=\int _0^1\frac{\beta ^2dy}{y^{2(s+\beta )}} \int _0^{1-y}\eta ^{1-2s}(1-\eta )^{2s-1}[1-\eta +\theta \eta ]^{2\beta -2}d\eta \quad ({\mathrm{let}}\ \eta =1-t)\\ &{}\le \int _0^1\frac{\beta ^2dy}{y^{2(s+\beta )}} \int _0^1\eta ^{1-2s}(1-\eta )^{2s-1}[1-(1-\theta )\eta ]^{2\beta -2}d\eta . \end{array} \end{aligned}$$

In the last step, the conditions \(0<1-y<1\) and that the integrand is non-negative are used. Analogous to \(I_1\), we involve the inner singular integral in \(I_2\) into the convergent Gauss hypergeometric function \({_2F_1}(a,b,c;z),\)

$$\begin{aligned} \begin{array}{lll} \int _0^1\eta ^{1-2s}(1-\eta )^{2s-1}[1-(1-\theta )\eta ]^{2\beta -2}d\eta =\frac{\varGamma (b)\varGamma (c-b)}{\varGamma (c)}{_2F_1}(a,b,c;z), \end{array} \end{aligned}$$

with \(a=2-2\beta ,b=2-2s,c=2\) and \(z=1-\theta .\) So, the finiteness of \(I_2\) is equivalent to requiring \(s<\frac{1}{2}-\beta .\)

Collecting the finiteness of \(I_1\) and \(I_2\), we conclude that \(\Vert x^{-\beta }\Vert _{H^s(\varOmega )}\) is finite for \(s<{1\over 2}-\beta \). Taking \(s=\gamma -\beta \), we obtain the stated result.

Case (2). As \(\frac{1}{2}\le \beta <1\).

In this case \(\beta -\gamma >0\). The fact \(_0I_x^{\beta -\gamma }x^{-\beta }=\frac{\varGamma (1-\beta )}{\varGamma (1-\gamma )}x^{-\gamma }\in L^2(\varOmega )\) implies \(x^{-\beta }\in J_L^{-(\beta -\gamma )}\). Considering the equivalence between space \(J_L^{-(\beta -\gamma )}(\varOmega )\) and space \(H^{-(\beta -\gamma )}(\varOmega )\) (see Lemma 6.1), we obtain the result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Chen, H. & Wang, H. Least-Squared Mixed Variational Formulation Based on Space Decomposition for a Kind of Variable-Coefficient Fractional Diffusion Problems. J Sci Comput 78, 687–709 (2019). https://doi.org/10.1007/s10915-018-0782-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0782-y

Keywords

Mathematics Subject Classification

Navigation