Skip to main content
Log in

Finite Element Approximation for the Fractional Eigenvalue Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The purpose of this work is to study a finite element method for finding solutions to the eigenvalue problem for the fractional Laplacian. We prove that the discrete eigenvalue problem converges to the continuous one and we show the order of such convergence. Finally, we perform some numerical experiments and compare our results with previous work by other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Acosta, G., Bersetche, F., Borthagaray, J.P.: A short FEM implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74(4), 784–816 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ainsworth, M., Glusa, C.: Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains (2017). arXiv:1708.01923v1

  4. Amore, P., Fernández, F.M., Hofmann, C.P., Sáenz, R.A.: Collocation method for fractional quantum mechanics. J. Math. Phys. 51(12), 122101 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antoine, X., Tang, Q., Zhang, Y.: On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions. J. Comput. Phys. 325, 74–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, Vol. II, Handb. Numer. Anal., II, pp. 641–787. North-Holland, Amsterdam (1991)

  7. Bao, W., Ruan, X., Shen, J., Sheng, C.: Fundamental gaps of the fractional Schrödinger operator. (2018). arXiv preprint arXiv:1801.06517

  8. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)

    Article  Google Scholar 

  9. Bertoin, J.: Lévy Processes, Volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  10. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boffi, D., Brezzi, F., Gastaldi, L.: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput. 69(229), 121–140 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bonito, A., Borthagaray, J.P., Nochetto, R.H., Otárola, E., Salgado, A.J.: Numerical methods for fractional diffusion. Computing and Visualization in Science (2018). https://doi.org/10.1007/s00791-018-0289-y

    Google Scholar 

  13. Buades, A., Coll, B., Morel, J.M.: Image denoising methods. A new nonlocal principle. SIAM Rev. 52(1), 113–147 (2010). Reprint of “A review of image denoising algorithms, with a new one” [MR2162865]

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75(2), 305–332 (2002)

    Article  Google Scholar 

  16. Chen, Z.-Q., Song, R.: Two-sided eigenvalue estimates for subordinate processes in domains. J. Funct. Anal. 226(1), 90–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Clément, P.: Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. RAIRO Analyse Numérique 9(R–2), 77–84 (1975)

    MathSciNet  MATH  Google Scholar 

  18. Cont, Rama, Tankov, Peter: Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall, Boca Raton (2004)

    MATH  Google Scholar 

  19. Cushman, J.H., Ginn, T.R.: Nonlocal dispersion in media with continuously evolving scales of heterogeneity. Transp. Porous Media 13(1), 123–138 (1993)

    Article  Google Scholar 

  20. Del Pezzo, L.M., Quaas, A.: Global bifurcation for fractional \(p\)-Laplacian and an application. Z. Anal. Anwend. 35(4), 411–447 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Demengel, F., Demengel, G.: Functional spaces for the theory of elliptic partial differential equations. Universitext. Springer, London; EDP Sciences, Les Ulis, (2012). Translated from the 2007 French original by Reinie Erné

  22. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Duo, S., Zhang, Y.: Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well. Commun. Comput. Phys. 18(2), 321–350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dyda, B., Kuznetsov, A., Kwaśnicki, M.: Eigenvalues of the fractional Laplace operator in the unit ball. J. Lond. Math. Soc. 95(2), 500–518 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dyda, B., Kuznetsov, A., Kwaśnicki, M.: Fractional Laplace operator and Meijer G-function. Constr. Approx. 45(3), 427–448 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gatto, P., Hesthaven, J.S.: Numerical approximation of the fractional Laplacian via hp-finite elements, with an application to image denoising. J. Sci. Comp. 65(1), 249–270 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ghelardoni, P., Magherini, C.: A matrix method for fractional Sturm–Liouville problems on bounded domain. Adv. Comput. Math. 43(6), 1377–1401 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, (1985)

  30. Grubb, G.: Fractional laplacians on domains, a development of Hörmander’s theory of \(\mu \)-transmission pseudodifferential operators. Adv. Math. 268, 478–528 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Grubb, G.: Spectral results for mixed problems and fractional elliptic operators. J. Math. Anal. Appl. 421(2), 1616–1634 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin, (1995). Reprint of the 1980 edition

  33. Klafter, J., Sokolov, I.M.: Anomalous diffusion spreads its wings. Phys. World 18(8), 29 (2005)

    Article  Google Scholar 

  34. Kufner, A.: Weighted Sobolev Spaces. A Wiley-Interscience Publication. Wiley, New York, (1985). Translated from the Czech

  35. Kulczycki, T., Kwaśnicki, M., Małecki, J., Stos, A.: Spectral properties of the Cauchy process on half-line and interval. Proc. Lond. Math. Soc. (3) 101(2), 589–622 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kwaśnicki, M.: Eigenvalues of the fractional Laplace operator in the interval. J. Funct. Anal. 262(5), 2379–2402 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66(5), 056108 (2002)

    Article  MathSciNet  Google Scholar 

  38. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (2012)

    MATH  Google Scholar 

  39. Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42(2), 185–197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Luchko, Y.: Fractional Schrödinger equation for a particle moving in a potential well. J. Math. Phys. 54(1), 012111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. McCay, B.M., Narasimhan, M.N.L.: Theory of nonlocal electromagnetic fluids. Arch. Mech. (Arch. Mech. Stos.) 33(3), 365–384 (1981)

    MathSciNet  MATH  Google Scholar 

  42. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37(31), R161–R208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Raviart, P.-A., Thomas, J.-M.: Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, (1983)

  44. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. Journal de Mathématiques Pures et Appliquées 101(3), 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ros-Oton, X., Serra, J.: Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete Contin. Dyn. Syst. 35(5), 2131–2150 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Scott, L.Ridgway, Zhang, Shangyou: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Servadei, R.: The Yamabe equation in a non-local setting. Adv. Nonlinear Anal. 2(3), 235–270 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Servadei, R., Valdinoci, E.: A Brezis–Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Anal. 12(6), 2445–2464 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33(5), 2105–2137 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Servadei, R., Valdinoci, E.: On the spectrum of two different fractional operators. Proc. R. Soc. Edinburgh Sect. A 144(4), 831–855 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58(1), 133–154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  54. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. S\(\vec{\rm e}\)MA 49, 33–44 (2009)

  56. Zhou, Y.: Fractional Sobolev extension and imbedding. Trans. Am. Math. Soc. 367(2), 959–979 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zoia, A., Rosso, A., Kardar, M.: Fractional Laplacian in bounded domains. Phys. Rev. E (3) 76(2), 021116, 11 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank G. Grubb and R. Rodríguez for the valuable help they provided through clarifying discussions on the topic of this paper, and to F. Bersetche for improving the efficiency of the Matlab code employed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro M. Del Pezzo.

Additional information

Research of Juan Pablo Borthagaray has been partially supported by CONICET under Grant PIP 2014-2016 11220130100184CO.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borthagaray, J.P., Del Pezzo, L.M. & Martínez, S. Finite Element Approximation for the Fractional Eigenvalue Problem. J Sci Comput 77, 308–329 (2018). https://doi.org/10.1007/s10915-018-0710-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0710-1

Keywords

Mathematics Subject Classification

Navigation