Skip to main content
Log in

Efficient Evaluation of Reliability-Oriented Sensitivity Indices

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The role of simulation keeps increasing for the reliability analysis of complex systems. Most of the time, these analyses can be reduced to estimating the probability of occurrence of an undesirable event, also called failure probability, using a stochastic model of the system. If the considered event is rare, sophisticated sample-based procedures are generally introduced to get a relevant estimate of the failure probability. Based on the samples constructed for the evaluation of this estimate, this work considers two types of reliability-oriented sensitivity indices (ROSI). The first ones are introduced to identify the model inputs whose variability has to be reduced in priority to decrease this probability. The second ones are used to find the model inputs whose distribution has to be particularly well-characterized for the available estimate to be realistic. It is also shown how these ROSI can be derived when the true model is approximated by a surrogate model. In particular, an innovative procedure is proposed to take into account the surrogate model uncertainty in the estimation of these ROSI. The proposed approach is then applied to the reliability analysis of a series of numerical and industrial examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rubinstein, R.T., Kroese, D.: Simulation and the Monte Carlo Method. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  2. Freudenthal, A.N.: Safety and the probability of structural failure. Trans. ASCE 121, 1337–1397 (1956)

    Google Scholar 

  3. Rackwitz, R., Fiessler, B.: Structural reliability under combined load sequences. J. Comput. Struct. 9, 479–484 (1978)

    Article  MATH  Google Scholar 

  4. Lemaire, M.: Structural Reliability. Wiley, New York (2009)

    Book  Google Scholar 

  5. Castillo, E., Sarabia, J., Solares, C., Gomez, P.: Uncertainty analyses in fault trees and Bayesian networks using FORM/SORM methods. Reliab. Eng. Syst. Saf. 65, 29–40 (1999)

    Article  Google Scholar 

  6. Kahn, H., Harris, T.: Estimation of particle transmission by random sampling. Natl. Bur. Stand. Appl. Math. Ser. 12, 27–30 (1951)

    Google Scholar 

  7. Raguet, H., Marrel, A.: arXiv:1801.10047 (2018)

  8. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.: Global Sensitivity Analysis: The Primer. Wiley, New York (2008)

    MATH  Google Scholar 

  9. Cui, L., Lu, Z., Zhao, X.: Moment-independent importance measure of basic random variable and its probability density evolution solution. Sci. China Technol. Sci. 53(4), 1138–1145 (2010)

    Article  MATH  Google Scholar 

  10. Li, L., Lu, Z., Feng, J., Wang, B.: Moment-independent importance measure of basic variable and its state dependent parameter solution. Struct. Saf. 38, 40–47 (2012)

    Article  Google Scholar 

  11. Sobol, I., Tarantola, S., Gatelli, D., Kucherenko, S., Mauntz, W.: Estimating the approximation error when fixing unessential factors in global sensitivity analysis. Reliab. Eng. Syst. Saf. 92, 957–960 (2007)

    Article  Google Scholar 

  12. Wei, P., Lu, Z., Hao, W., Feng, J., Wang, B.: Efficient sampling methods for global reliability sensitivity analysis. Comput. Phys. Commun. 183(8), 1728–1743 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yun, W., Lu, Z., Jiang, X., Liu, S.: An efficient method for estimating global sensitivity indices. Int. J. Numer. Methods Eng. 108, 1275–1289 (2016)

    Article  MathSciNet  Google Scholar 

  14. Rubinstein, R.T.: The score function approach for sensitivity analysis of computer simulation models. Math. Comput. Simul. 28(5), 351–379 (1986)

    Article  MATH  Google Scholar 

  15. Lemaitre, P., Sergienko, E., Arnaud, A., Bousquet, N., Gamboa, F., Iooss, B.: Density modification-based reliability sensitivity analysis. J. Stat. Comput. Simul. 85(6), 1200–1223 (2015)

    Article  MathSciNet  Google Scholar 

  16. Sacks, J., Welch, W., Mitchell, T., Wynn, H.: Design and analysis of computer experiments. Stat. Sci. 4, 409–435 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Santner, T.J., Williams, B., Notz, W.: The Design and Analysis of Computer Experiments. Springer, New York (2003)

    Book  MATH  Google Scholar 

  18. Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23, 470–472 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nataf, A.: Determination des distributions dont les marges sont donnees. C. R. Acad. Sci. Paris 225, 42–43 (1962)

    MATH  Google Scholar 

  20. Lebrun, R., Dutfoy, A.: An innovating analysis of the Nataf transformation from the copula viewpoint. Prob. Eng. Mech. 24, 312–320 (2009)

    Article  Google Scholar 

  21. Cérou, F., Guyader, A.: Adaptive multilevel splitting for rare event analysis. Stoch. Anal. Appl. 25(2), 417–443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Walter, C.: Moving particles: a parallel optimal multilevel splitting method with application in quantiles estimation and meta-model based algorithms. Struct. Saf. 55, 10–25 (2015)

    Article  Google Scholar 

  23. Au, S., Beck, J.: Estimation of small failure probabilities in high dimensions by subset simulation. Probab. Eng. Mech. 16(4), 263–277 (2001)

    Article  Google Scholar 

  24. Cérou, F., Moral, P.D., Furon, T., Guyader, A.: Sequential Monte Carlo for rare event simulation. Stat. Comput. 22(3), 795–808 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44, 335–341 (1949)

    Article  MATH  Google Scholar 

  26. Hastings, W.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sobol, I., Myshetskaya, E.: Monte Carlo estimators for small sensitivity indices. Monte Carlo Methods Appl. 13, 455–465 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Owen, A.: Better estimation of small Sobol sensitivity indices. ACM Trans. Model. Comput. Simul. 23, 11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, C., Mahadevan, S.: An efficient modularized sample-based method to estimate the first-order Sobol’ index. Reliab. Eng. Syst. Saf. 153, 110–121 (2016)

    Article  Google Scholar 

  31. Kucherenko, S., Song, S.: Different numerical estimators for main effect global sensitivity indices. Reliab. Eng. Syst. Saf. 165, 222–238 (2017)

    Article  Google Scholar 

  32. Xiao, S., Lu, Z.: Structural reliability sensitivity analysis based on classification of model output. Aerosp. Sci. Technol. 57, 279–291 (2018)

    Google Scholar 

  33. Perrin, G., Soize, C., Ouhbi, N.: Data-driven kernel representations for sampling with an unknown block dependence structure under correlation constraints. J. Comput. Stat. Data Anal. 119, 139–154 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Perrin, G., Soize, C., Duhamel, D., Funfschilling, C.: Identification of polynomial chaos representations in high dimension from a set of realizations. SIAM J. Sci. Comput. 34(6), 2917–2945 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lemaitre, P.: Analyse de sensibilité en fiabilité des structures. Ph.D. thesis, University of Bordeaux, France (2014)

  36. Gratiet, L.L., Cannamela, C., Iooss, B.: A Bayesian approach for global sensitivity analysis of (multifidelity) computer codes. SIAM/ASA J. Uncertain. Quantif. 2(1), 336–363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Iooss, B., Gratiet, L.L.: Uncertainty and sensitivity analysis of functional risk curves based on Gaussian processes. Reliab. Eng. Syst. Saf. (2017). https://doi.org/10.1016/j.ress.2017.11.022

  38. McKay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239 (1979)

    MathSciNet  MATH  Google Scholar 

  39. Park, J.S.: Optimal Latin-hypercube designs for computer experiments. J. Stat. Plan. Inference 39, 95–111 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Morris, M., Mitchell, T.: Exploratory designs for computationnal experiments. J. Stat. Plan. Inference 43, 381–402 (1995)

    Article  MATH  Google Scholar 

  41. Fang, K., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Computer Science and Data Analysis Series. Chapman & Hall, London (2006)

    MATH  Google Scholar 

  42. Perrin, G., Cannamela, C.: A repulsion-based method for the definition and the enrichment of opotimized space filling designs in constrained input spaces. J. Soc. Fr. Stat. 158(1), 37–67 (2017)

    MATH  Google Scholar 

  43. Bect, J., Ginsbourger, D., Li, L., Picheny, V., Vasquez, E.: Sequential design of computer experiments for the estimation of a probability of failure. Stat. Comput. 22, 773–797 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chevalier, C., Bect, J., Ginsburger, D., Vasquez, E., Picheny, V., Richet, Y.: Fast kriging-based stepwise uncertainty reduction with application to the identification of an excursion set. Technometrics 56(4), 455–465 (2014)

    Article  MathSciNet  Google Scholar 

  45. Bichon, B., Eldred, M., Swiler, L., Mahadevan, S., McFarland, J.: Efficient global reliability analysis for non linear implicit performance functions. AIAA J. 46(10), 2459–2468 (2008)

    Article  Google Scholar 

  46. Echard, B., Gayton, N., Lemaire, M.: AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Struct. Saf. 22, 145–154 (2011)

    Article  Google Scholar 

  47. Fauriat, W., Gayton, N.: AK-SYS: an adaptation of the AK-MCS method for system reliability. Reliab. Eng. Syst. Saf. 123, 137–144 (2014)

    Article  Google Scholar 

  48. Perrin, G.: Active learning surrogate models for the conception of systems with multiple failure modes. Reliab. Eng. Syst. Saf. 149, 130–136 (2016)

    Article  Google Scholar 

  49. Defaux, G., Walter, C., Iooss, B., Moutoussamy, V.: R package version 2.1-0 (2014)

  50. Iooss, B., Janon, A., Pujol, G.: R package version 1.15.2 (2018)

  51. Echard, B., Gayton, N., Lemaire, M., Relun, N.: A combined importane sampling and kriging reliability method for small failure probabilities with time-demanding numerical models. Reliab. Eng. Syst. Saf. 111, 232–240 (2013)

    Article  Google Scholar 

  52. Bect, J., Li, L., Vasquez, E.: Bayesian subset simulation. SIAM/ASA J. Uncertain. Quantif. 5(1), 762–786 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kucherenko, S., Tarantola, S., Annoni, P.: Estimation of global sensitivity indices for models with dependent variables. Comput. Phys. Commun. 183(4), 937–946 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mara, T., Tarantola, S., Annoni, P.: Non-parametric methods for global sensitivity analysis of model output with dependent inputs. Environ. Model. Softw. 72, 173–183 (2015)

    Article  Google Scholar 

  55. Sueur, R., Iooss, B., Delage, T.: Sensitivity analysis using perturbed-law based indices for quantiles and application to an industrial case. In: 10th International Conference on Mathematical Methods in Reliability (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Perrin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 1

First, let us notice that \(\mathbb {V}_{\varvec{x}}\left[ 1_{y(\varvec{x})>s} \right] =p(1-p)\). Then, using Bayes theorem and the equality given by Eq. (14), it follows that:

$$\begin{aligned} \mathbb {E}_{x_i}\left[ \left( \mathbb {P}_{\varvec{x}}(y(\varvec{x})>q)- \mathbb {P}_{\varvec{x}_{-i}}(y(\varvec{x})>q \ \vert \ x_i) \right) ^2 \right]= & {} \mathbb {E}_{x_i}\left[ \left( p- p\frac{f_{x_i\vert y(\varvec{x})>q}(x_i)}{f_{x_i}(x_i)} \right) ^2 \right] \nonumber \\= & {} p^2\mathbb {E}_{x_i}\left[ \left( 1- \frac{f_{x_i\vert y(\varvec{x})>q}(x_i)}{f_{x_i}(x_i)} \right) ^2 \right] , \end{aligned}$$
(48)
$$\begin{aligned} \mathbb {E}_{\varvec{x}_{-i}}\left[ \left( \mathbb {P}(y(\varvec{x})>q)- \mathbb {P}(y(\varvec{x})>q \ \vert \ \varvec{x}_{-i}) \right) ^2 \right]= & {} p^2\mathbb {E}_{\varvec{x}_{-i}}\left[ \left( 1- \frac{f_{\varvec{x}_{-i}\vert y(\varvec{x})>q}(\varvec{x}_{-i})}{f_{\varvec{x}_{-i}}(\varvec{x}_{-i})} \right) ^2 \right] .\nonumber \\ \end{aligned}$$
(49)

As \(\mathbb {E}_{{x}_{i}}\left[ \frac{f_{x_i\vert y(\varvec{x})>q}(x_i)}{f_{x_i}(x_i)} \right] =\mathbb {E}_{\varvec{x}_{-i}}\left[ \frac{f_{\varvec{x}_{-i}\vert y(\varvec{x})>q}(\varvec{x}_{-i})}{f_{\varvec{x}_{-i}}(\varvec{x}_{-i})} \right] =1\), we eventually find the searched results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrin, G., Defaux, G. Efficient Evaluation of Reliability-Oriented Sensitivity Indices. J Sci Comput 79, 1433–1455 (2019). https://doi.org/10.1007/s10915-018-00898-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-00898-8

Keywords

Mathematics Subject Classification

Navigation