Skip to main content
Log in

Flows Generating Nonlinear Eigenfunctions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Linear eigenvalue analysis has provided a fundamental framework for many scientific and engineering disciplines. Consequently, vast research was devoted to numerical schemes for computing eigenfunctions. In recent years, new research in image processing and machine-learning has shown the applicability of nonlinear eigenvalue analysis, specifically based on operators induced by convex functionals. This has provided new insights, better theoretical understanding and improved image-processing, clustering and classification algorithms. However, the theory of nonlinear eigenvalue problems is still very preliminary. We present a new class of nonlinear flows that can generate nonlinear eigenfunctions of the form \(T(u)=\lambda u\), where T(u) is a nonlinear operator and \(\lambda \in \mathbb {R} \) is the eigenvalue. We develop the theory where T(u) is a subgradient element of a regularizing one-homogeneous functional, such as total-variation or total-generalized-variation. We focus on a forward flow which simultaneously smooths the solution (with respect to the regularizer) while increasing the 2-norm. An analog discrete flow and its normalized version are formulated and analyzed. The flows translate to a series of convex minimization steps. In addition we suggest an indicator to measure the affinity of a function to an eigenfunction and relate it to pseudo-eigenfunctions in the linear case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Appell, J., De Pascale, E., Vignoli, A.: Nonlinear spectral theory, vol. 10. Walter de Gruyter, Berlin (2004)

    Book  MATH  Google Scholar 

  2. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods. Math. Program. 137, 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubert, G., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68, 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aujol, J., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition—modeling, algorithms, and parameter selection. Int. J. Comput. Vision 67, 111–136 (2006)

    Article  MATH  Google Scholar 

  5. Aujol, J.-F., Gilboa, G., Papadakis, N.: Theoretical analysis of flows estimating eigenfunctions of one-homogeneous functionals for segmentation and clustering. Preprint. HAL-01563922. (2017)

  6. Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in r n. J. Differ. Equ. 184, 475–525 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benning, M., Brune, C., Burger, M., Müller, J.: Higher-order tv methodsenhancement via bregman iteration. J. Sci. Comput. 54, 269–310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benning, M., Burger, M.: Ground states and singular vectors of convex variational regularization methods. Methods Appl. Anal. 20, 295–334 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Börm, S., Mehl, C.: Numerical Methods for Eigenvalue Problems. Walter de Gruyter, Berlin (2012)

    Book  MATH  Google Scholar 

  10. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3, 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bresson, X., Laurent, T., Uminsky, D., Brecht, J.: Convergence and energy landscape for cheeger cut clustering. In: Advances in Neural Information Processing Systems, pp. 1385–1393 (2012)

  12. Bresson, X., Laurent, T., Uminsky, D., Von Brecht, J.: Multiclass total variation clustering. In: Advances in Neural Information Processing Systems, pp. 1421–1429 (2013)

  13. Bresson, X., Szlam, A.: Total variation, cheeger cuts. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 1039–1046 (2010)

  14. Bresson, X., Tai, X.-C., Chan, T.F., Szlam, A.: Multi-class transductive learning based on 1 relaxations of Cheeger cut and Mumford-Shah-Potts model. J. Math. Imaging Vis. 49, 191–201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brinkmann, E.-M., Burger, M., Rasch, J., Sutour, C.: Bias-reduction in variational regularization, arXiv preprint arXiv:1606.05113 (2016)

  16. Burger, M., Gilboa, G., Moeller, M., Eckardt, L., Cremers, D.: Spectral decompositions using one-homogeneous functionals, arXiv preprint arXiv:1601.02912 (2016)

  17. Burger, M., Gilboa, G., Osher, S., Xu, J., et al.: Nonlinear inverse scale space methods. Commun. Math. Sci. 4, 179–212 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Burger, M., He, L., Schönlieb, C.-B.: Cahn–Hilliard inpainting and a generalization for grayvalue images. SIAM J. Imaging Sci. 2, 1129–1167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Burger, M., Osher, S.: A guide to the tv zoo. In: Level Set and PDE Based Reconstruction Methods in Imaging, Springer, pp. 1–70 (2013)

  20. Chambolle, A.: An algorithm for total variation minimization and applications. JMIV 20, 89–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. Theor. Found. Numer. Methods Sparse Recovery 9, 227 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chatelin, F.: The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operators. SIAM Rev. 23, 495–522 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cuppen, J.J.M.: A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. 36, 177–195 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  26. Deledalle, C.-A., Papadakis, N., Salmon, J.: On debiasing restoration algorithms: applications to total-variation and nonlocal-means. In: International Conference on Scale Space and Variational Methods in Computer Vision, Springer, pp. 129–141 (2015)

  27. Dong, B., Ji, H., Li, J., Shen, Z., Xu, Y.: Wavelet frame based blind image inpainting. Appl. Comput. Harmonic Anal. 32, 268–279 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ekeland, I., Temam, R.: Convex Analysis and 9 Variational Problems. SIAM, New Delhi (1976)

    MATH  Google Scholar 

  29. Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Process. 17, 1047–1060 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Francis, J.G.F.: The qr transformation a unitary analogue to the lr transformationpart 1. Comput. J. 4, 265–271 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7, 1937–1961 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hein, M., Bühler, T.: An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse pca. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp. 847–855. Curran Associates, Inc., New York (2010)

    Google Scholar 

  34. Jung, M., Peyré, G., Cohen, L.D.: Nonlocal active contours. SIAM J. Imaging Sci. 5, 1022–1054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4, 1091–1115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65, 480–491 (2011)

    Article  Google Scholar 

  37. Landau, H.J.: On Szegö’s eingenvalue distribution theorem and non-hermitian kernels. Journal d’Analyse Mathématique 28, 335–357 (1975)

    Article  MATH  Google Scholar 

  38. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: International Conference on Scale Space and Variational Methods in Computer Vision, Springer, pp. 150–162 (2009)

  39. Louchet, C., Moisan, L.: Total variation as a local filter. SIAM J. Imaging Sci. 4, 651–694 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations, March 2001. The 15th Dean Jacquelines B. Lewis Memorial Lectures. (2001)

  41. Papafitsoros, K., Bredies, K.: A study of the one dimensional total generalised variation regularisation problem. arXiv preprint arXiv:1309.5900 (2013)

  42. Pöschl, C., Scherzer, O.: Exact solutions of one-dimensional tgv. arXiv preprint arXiv:1309.7152 (2013)

  43. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Society for Industrial and Applied Mathematics, Philadelphia (2011)

    Book  MATH  Google Scholar 

  45. Sawatzky, A., Tenbrinck, D., Jiang, X., Burger, M.: A variational framework for region-based segmentation incorporating physical noise models. J. Math. Imaging Vis. 47, 179–209 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schmaltz, C., Rosenhahn, B., Brox, T., Weickert, J.: Region-based pose tracking with occlusions using 3d models. Mach. Vis. Appl. 23, 557–577 (2012)

    Article  Google Scholar 

  47. Schmidt, M.F., Benning, M., Schönlieb, C.-B.: Inverse scale space decomposition, arXiv preprint arXiv:1612.09203 (2016)

  48. Trefethen, L.N.: Approximation theory and numerical linear algebra. In: Algorithms for approximation II, Springer, pp. 336–360 (1990)

  49. Trefethen, L.N.: Pseudospectra of matrices. Numer. Anal 91, 234–266 (1991)

    MATH  Google Scholar 

  50. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra, vol. 50. Siam, New Delhi (1997)

    Book  MATH  Google Scholar 

  51. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  52. Varah, J.M.: On the separation of two matrices. SIAM J. Numer. Anal. 16, 216–222 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  53. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in pde-based computation of image motion. Int. J. Comput. Vis. 45, 245–264 (2001)

    Article  MATH  Google Scholar 

  54. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 21, pp. 1753–1760. Curran Associates, Inc., New York (2009)

    Google Scholar 

  55. Werlberger, M., Pock, T., Unger, M., Bischof, H.: Optical flow guided tv-l1 video interpolation and restoration. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer, pp. 273–286 (2011)

  56. Wilkinson, J.H., Wilkinson, J.H.: The Algebraic Eigenvalue Problem, vol. 87. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

  57. Yang, M., Liang, J., Zhang, J., Gao, H., Meng, F., Xingdong, L., Song, S.-J.: Non-local means theory based perona-malik model for image denosing. Neurocomputing 120, 262–267 (2013)

    Article  Google Scholar 

  58. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: 2011 International Conference on Computer Vision, IEEE, pp. 479–486 (2011)

Download references

Acknowledgements

We would like to thank Martin Benning, Nicolas Papadakis and Jean-Francois Aujol for stimulating discussions and helpful comments. We would further like to thank the two anonymous reviewers for their suggestions. We acknowledge support by the Israel Science Foundation (Grant No. 718/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raz Z. Nossek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nossek, R.Z., Gilboa, G. Flows Generating Nonlinear Eigenfunctions. J Sci Comput 75, 859–888 (2018). https://doi.org/10.1007/s10915-017-0577-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0577-6

Keywords

Navigation