Skip to main content
Log in

Piecewise-Smooth Image Segmentation Models with \(L^1\) Data-Fidelity Terms

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, we propose a class of piecewise-smooth image segmentation models in a variational framework. The models involve \(L^1\) data fidelity measures and assume that an image can be approximated by the sum of a piecewise-constant function and a smooth function. The smooth function models intensity inhomogeneity, and the \(L^1\) data-fitting terms enable to segment images with low contrast or outliers such as impulsive noise. The regions to be segmented are represented as smooth functions, almost binary functions, instead of the Heaviside expression of level set functions. The existence of minimizers of our main model is shown. Furthermore, we design fast and efficient optimization algorithms based on the augmented Lagrangian method and present a partial convergence result. Numerical results validate the effectiveness of the proposed models compared with other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alliney, S.: A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans. Signal Process. 45(5), 913–917 (1997)

    Article  Google Scholar 

  2. Bae, E., Yuan, J., Tai, X.C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vis. 92(1), 112–129 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press Series. Artificial Intelligence. MIT Press, Cambridge (1987)

    Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

    Article  MATH  Google Scholar 

  5. Bresson, X., Esedoḡlu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake models. J. Math. Imaging Vis. 28(2), 151–167 (2007)

  6. Brown, E., Chan, T., Bresson, X.: A convex approach for multi-phase piecewise constant Mumford–Shah image segmentation. UCLA CAM report 09-66 (2009)

  7. Brox, T., Cremers, D.: On the statistical interpretation of the piecewise smooth Mumford–Shah functional. In: Scale Space and Variational Methods in Computer Vision. LNCS: 4485, pp. 203–213. Springer, Berlin (2007)

  8. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging. Vis. 20(1), 89–97 (2004)

    MathSciNet  Google Scholar 

  9. Chan, T., Esedoḡlu, S.: Aspects of total varation regularized \(L^1\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

  10. Chan, T., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

  11. Chan, T., Sandberg, B., Vese, L.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)

    Article  Google Scholar 

  12. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  13. Darbon, J.: A note on the discrete binary Mumford–Shah model. Computer Vision/Computer Graphics Collaboration Techniques. LNCS: 4418, pp. 283–294 (2007)

  14. Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(3), 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eckstein, J., Bertsekas, D.: On the douglasrachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 5, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split-Bregman. UCLA CAM report 09–31 (2009)

  17. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Roca Baton (1992)

    MATH  Google Scholar 

  18. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, Studies in Applied Mathematics. North Holland, Amsterdam, chapter 9, pp. 299–331 (1983)

  19. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45(1–3), 272–293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldstein, T., Osher, S.: The split Bregman method for \(L^1\)-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gu, Y., Wang, L.L., Xiong, W., Cheng, J., Huang, W., Zhou, J.: Efficient and robust image segmentation with a new piecewise-smooth decomposition model. In: Proceedings of IEEE International Conference on Image Processing, pp. 2718–2722 (2013)

  22. Jung, M., Kang, M.: Efficient nonsmooth nonconvex optimization for image restoration and segmentation. J. Sci. Comput. 62(2), 336–370 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jung, M., Kang, M., Kang, M.: Variational image segmentation models involving non-smooth data-fidelity terms. J. Sci. Comput. 59(2), 277–308 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jung, M., Peyre, G., Cohen, L.: Nonlocal active contours. SIAM J. Imaging Sci. 5(3), 1022–1054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Le, T., Vese, L.: Additive and multiplicative piecewise-smooth segmentation models in a functional variational approach. Interpolat. Theory Appl. Comtemp. Math. 445, 207–224 (2007)

    Article  MATH  Google Scholar 

  26. Lee, Y.T., Le, T.: Active contour without edges for multiphase segmentations with the presence of poisson noise. UCLA CAM report 11-46 (2011)

  27. Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imaging Sci. 4, 1049–1096 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, C., Kao, C., Gore, J., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7 (2007)

  29. Li, F., Ng, M., Li, C.: Variational fuzzy Mumford–Shah model for image segmentation. SIAM J. Appl. Math. 70(7), 2750–2770 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, F., Osher, S., Qin, J., Yan, M.: Multiphase image segmentation based on fuzzy membership functions and \(l^1\)-norm fidelity. J. Sci. Comput. (2015). doi:10.1007/s10915-016-0183-z

    Google Scholar 

  31. Li, F., Shen, C., Li, C.: Multiphase soft segmentation with total variation and \(H^1\) regularization. J. Math. Imaging Vis. 37, 98–111 (2010)

    Article  MathSciNet  Google Scholar 

  32. Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. SIAM J. Numer. Anal. 40(3), 965–994 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  36. Nikolova, M.: Weakly constrained minimization. Application to the estimation of images and signals involving constant regions. J. Math. Imaging Vis. 21(2), 155–175 (2004)

    Article  MathSciNet  Google Scholar 

  37. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for the total variation based image restoration. Multi Model Simul. 4, 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. Vis. Commun. Image Represent. 13, 249–268 (2002)

    Article  Google Scholar 

  40. Piovano, J., Rousson, M., Papadopoulo, T.: Efficient segmentation of piecewise smooth images. In: Scale Space and Variational Methods in Computer Vision. LNCS: 4485. Springer, Berlin, pp. 709–720 (2007)

  41. Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex approach for computing minimal partitions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 810–817 (2009)

  42. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Samson, C., Blanc-Feraud, L., Aubert, G., Zerubia, J.: A variational model for image classification and restoration. IEEE Trans. Pattern Anal. Mach. Intell. 22(5), 460–472 (2000)

    Article  MATH  Google Scholar 

  44. Setzer, S.: Operator splittings, Bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92(3), 265–280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  46. Wang, L., He, L., Mishra, A., Li, C.: Active contours driven by local Gaussian distribution fitting energy. Signal Process. 89, 2435–2447 (2009)

    Article  MATH  Google Scholar 

  47. Wang, X., Huang, D., Xu, H.: An efficient local Chan–Vese model for image segmentation. Pattern Recognit. 43(3), 603–618 (2010)

    Article  MATH  Google Scholar 

  48. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, Y., Wu, B.: A new and fast multiphase image segmentation model for color images. Math. Probl. Eng. 2012(2012) (2012). doi:10.1155/2012/494761

  50. Yezzi, A., Tsai, A., Willsky, A.: A statistical approach to snakes for bimodal and trimodal imagery. Proc. IEEE Int. Conf. Comput. Vis. II, 898–903 (1999)

    Google Scholar 

  51. Yezzi, A., Tsai, A., Willsky, A.: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  52. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for \(L^1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zach, C., Gallup, D., Frahm, J., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: 13th International Fall Workshop Vision, Modeling, and Visualization, pp. 243–252 (2008)

  54. Zhang, R., Bresson, X., Chan, T., Tai, X.: Four color theorom and convex relaxation for image segmentation with any number of regions. Inverse Probl. Imaging 21(12), 4722–4734 (2012). doi:10.3934/ipi.2013.7.1099

    Google Scholar 

  55. Zhang, Y.: An alternating direction algorithm for nonnegative matrix factorization. CAAM technical report (2010)

  56. Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127(31), 179–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Miyoun Jung was supported by the Hankuk University of Foreign Studies Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyoun Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, M. Piecewise-Smooth Image Segmentation Models with \(L^1\) Data-Fidelity Terms. J Sci Comput 70, 1229–1261 (2017). https://doi.org/10.1007/s10915-016-0280-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0280-z

Keywords

Navigation