Skip to main content
Log in

Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider semi-discrete discontinuous Galerkin approximations of both displacement and displacement-stress formulations of the elastodynamics problem. We prove the stability analysis in the natural energy norm and derive optimal a-priori error estimates. For the displacement-stress formulation, schemes preserving the total energy of the system are introduced and discussed. We verify our theoretical estimates on two and three dimensions test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Volume 140 of Pure and Applied Mathematics, 2nd edn. Elsevier, Amsterdam (2003)

    Google Scholar 

  2. Antonietti, P.F., Ayuso de Dios, B., Mazzieri, I., Quarteroni, A.: Stability analysis for discontinuous Galerkin approximations of the elastodynamics problem. Technical Report MOX Report 56/2013, (2013)

  3. Antonietti, P.F., Marcati, C., Mazzieri, I., Quarteroni, A.: High order discontinuous Galerkin methods on simplicial elements for the elastodynamics equation. Numer. Algorithms (2015). doi:10.1007/s11075-015-0021-7

  4. Antonietti, P.F., Mazzieri, I., Quarteroni, A., Rapetti, F.: Non-conforming high order approximations of the elastodynamics equation. Comput. Methods Appl. Mech. Eng. 209(212), 212–238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2001/02

  7. Arnold, D.N., Brezzi, F., Falk, R.S., Marini, L.D.: Locking-free Reissner–Mindlin elements without reduced integration. Comput. Methods Appl. Mech. Eng. 196(37–40), 3660–3671 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenner, S.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comp, pp 1067–1087, (2004)

  9. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carcione, J.M., Kosloff, D., Kosloff, R.: Wave-propagation simulation in an elastic anisotropic (transversely isotropic) solid. Q. J. Mech. Appl. Math. 41(3), 319–346 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal 38(5), 1676–1706 (2000). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chaljub, E., Komatitsch, D., Vilotte, J., Capdeville, Y., Valette, B., Festa, G.: Spectral element analysis in seismology. In: Wu, R.-S., Maupin, V. (eds.) Advances in Wave Propagation in Heterogeneous Media, Volume 48 of Advances in Geophysics, pp. 365–419. Elsevier - Academic Press, London, UK (2007)

    Google Scholar 

  13. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  15. Cividini, A., Quarteroni, A., Zampieri, E.: Numerical solution of linear elastic problems by spectral collocation methods. Comput. Methods Appl. Mech. Eng. 104(1), 49–76 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. de la Puente, J., Käser, M., Dumbser, M., Igel, H.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—iv. Anisotropy. Geophys. J. Int. 169(3), 1210–1228 (2007)

    Article  Google Scholar 

  17. Delcourte, S., Fezoui, L., Glinsky-Olivier, N.: A high-order discontinuous Galerkin method for the seismic wave propagation. In: CANUM 2008, volume 27 of ESAIM Proceedings, pp 70–89. EDP Science, Les Ulis, (2009)

  18. Duvaut, G., Lions, J.-L.: Inequalities in mechanics and physics. In: Grundlehren der Mathematischen Wissenschaften. (trans: French by C. W. John), p 219, Springer, Berlin (1976)

  19. Faccioli, E., Maggio, F., Paolucci, R., Quarteroni, A.: 2d and 3d elastic wave propagation by a pseudo-spectral domain decomposition method. J. Seismol. 1(3), 237–251 (1997)

    Article  Google Scholar 

  20. Faccioli, E., Maggio, F., Quarteroni, A., Tagliani, A.: Spectral-domain decomposition methods for the solution of acoustic and elastic wave equations. Geophysics 61(4), 1160–1174 (1996)

    Article  Google Scholar 

  21. Georgoulis, E.H., Hall, E., Houston, P.: Discontinuous Galerkin methods for advection-diffusion-reaction problems on anisotropically refined meshes. SIAM J. Sci. Comput., 30(1):246–271, 2007/08

  22. Grote, M., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Helbig, K.: Handbook of geophysical exploration. In: Helbig, K. (ed.) Foundations of Anisotropy for Exploration Seismics, volume 22 of Handbook of Geophysical Exploration: Seismic Exploration. Pergamon, Oxford (1994)

    Google Scholar 

  25. Käser, M., Dumbser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—I. The two-dimensional isotropic case with external source terms. Geophys. J. Int. 166(2), 855–877 (2006)

    Article  Google Scholar 

  26. Käser, M., Dumbser, M.: A highly accurate discontinuous Galerkin method for complex interfaces between solids and moving fluids. Geophysics 73(3), T23–T35 (2008)

    Article  Google Scholar 

  27. Klin, P., Priolo, E., Seriani, G.: Numerical simulation of seismic wave propagation in realistic 3-D geo-models with a fourier pseudo-spectral method. Geophys. J. Int. 183(2), 905–922 (2010)

    Article  Google Scholar 

  28. Komatitsch, D., Barnes, C., Tromp, J.: Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics 65(4), 1251–1260 (2000)

    Article  Google Scholar 

  29. Komatitsch, D., Ritsema, J., Tromp, J.: The spectral-element method, Beowulf computing, and global seismology. Science 298(5599), 1737–1742 (2002)

    Article  Google Scholar 

  30. Komatitsch, D., Tromp, J.: Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999)

    Article  Google Scholar 

  31. Komatitsch, D., Vilotte, J.: The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88(2), 368–392 (1998)

    MATH  Google Scholar 

  32. Kreiss, H.-O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24(3), 199–215 (1972)

    Article  MathSciNet  Google Scholar 

  33. Makridakis, C.G.: On mixed finite element methods for linear elastodynamics. Numer. Math. 61(2), 235–260 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Makridakis, C.G.: Finite element approximations of nonlinear elastic waves. Math. Comput. 61(204), 569–594 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mazzieri, I., Stupazzini, M., Guidotti, R., Smerzini, C.: Speed: spectral elements in elastodynamics with discontinuous galerkin: a non-conforming approach for 3D multi-scale problems. Int. J. Numer. Meth. Eng. 95(12), 991–1010 (2013)

    Article  MathSciNet  Google Scholar 

  36. Mercerat, E., Vilotte, J., Sánchez-Sesma, F.: Triangular spectral-element simulation of two-dimensional elastic wave propagation using unstructured triangular grids. Geophys. J. Int. 166(2), 679–698 (2006)

    Article  Google Scholar 

  37. Mizutani, H., Geller, R.J., Takeuchi, N.: Comparison of accuracy and efficiency of time-domain schemes for calculating synthetic seismograms. Phys. Earth Planet. Inter. 119(1–2), 75–97 (2000)

    Article  Google Scholar 

  38. Moczo, P., Kristek, J., Gális, M., Lis, M.: The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  39. Ortner, C., Süli, E.: Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems. SIAM J. Numer. Anal. 45(4), 1370–1397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Paolucci, R., Mazzieri, I., Smerzini, C.: Anatomy of strong ground motion: near-source records and three-dimensional physics-based numerical simulations of the Mw 6.0 2012 May 29 Po Plain earthquake, Italy. Geophys. J. Int. 203(3), 2001–2020 (2015)

  41. Patera, A.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comp. Phys. 54, 468–488 (1984)

    Article  MATH  Google Scholar 

  42. Quarteroni, A.: Numerical Models for Differential Problems, volume 8 of MS&A. Modeling, Simulation and Applications. Springer-Verlag Italia, Milan (2014)

    Google Scholar 

  43. Quarteroni, A., Zampieri, E.: Finite element preconditioning for Legendre spectral collocation approximations to elliptic equations and systems. SIAM J. Numer. Anal. 29(4), 917–936 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Raviart, P.-A., Thomas, J.-M.: Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983)

    Google Scholar 

  45. Rivière, B., Shaw, S., Wheeler, M.F., Whiteman, J.R.: Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numer. Math. 95(2), 347–376 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rivière, B., Shaw, S., Whiteman, J.R.: Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems. Numer. Methods Partial Diff. Equ. 23(5), 1149–1166 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rivière, B., Wheeler, M.F.: Discontinuous finite element methods for acoustic and elastic wave problems. In: Current trends in scientific computing (Xi’an, 2002), volume 329 of Contemp. Math., pp 271–282. Amer. Math. Soc., Providence, RI, (2003)

  48. Seriani, G., Priolo, E., Pregarz, A.: Modelling waves in anisotropic media by a spectral element method. In: Cohen, G. (ed.) Proceedings of the Third International Conference on Mathematical and Numerical Aspects of Wave Propagation, pp. 289–298. SIAM, Philadephia, PA (1995)

    Google Scholar 

  49. Stenberg, R.: Mortaring by a method of J. A. Nitsche. In: Computational mechanics (Buenos Aires, 1998). Centro Internac. Métodos Numér. Ing., Barcelona, (1998)

  50. Stupazzini, M., Paolucci, R., Igel, H.: Near-fault earthquake ground-motion simulation in the Grenoble valley by a high-performance spectral element code. Bull. Seismol. Soc. Am. 99(1), 286–301 (2009)

    Article  Google Scholar 

  51. Virieux, J., Calandra, H., Plessix, R.-E.: A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging. Geophys. Prospect. 59(5), 794–813 (2011)

    Article  Google Scholar 

  52. Wilcox, L.C., Stadler, G., Burstedde, C., Ghattas, O.: A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media. J. Comput. Phys. 229(24), 9373–9396 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Xu, H., Day, S.M., Minster, J.-B.H.: Two-dimensional linear and nonlinear wave propagation in a half-space. Bull. Seismol. Soc. Am. 89(4), 903–917 (1999)

    MathSciNet  Google Scholar 

  54. Xu, Y., Shu, C.-W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50(1), 79–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Part of this work was carried out during several visits of the second author to the IMATI-CNR of Pavia. She is grateful to the IMATI for the kind hospitality and support. The work of the second author was partially supported by KAUST Grants BAS\(/1/1636-01-01\) and Pocket ID 1000000193. The first and the third author have been partially supported by the INdAM-GNCS project “Nonstandard numerical methods for geophysics”. The first author has been also partially supported by the Italian research grant no. 2015-0182 “PolyNum: Metodi numerici poliedrici per equazioni alle derivate parziali” funded by Fondazione Cariplo and Regione Lombardia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilario Mazzieri.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Blanca Ayuso de Dios is on leave from the Institiution which is in Affiliation 4. Alfio Quarteroni is on leave from the Institution which is in Affiliation 5.

Appendix: Proof of Lemma 1 and Lemma 2

Appendix: Proof of Lemma 1 and Lemma 2

In this appendix we collect the proofs of the auxiliary Lemmas 1 and 2, used in the stability analysis.

Proof

(Proof of Lemma 1) The proof goes along the same lines as in the continuous case with subtle modifications to obtain bounds independent of h. Estimate (31) follows from the Cauchy–Schwarz inequality together with the lower bound of the mass density (2). To show estimate (32), we proceed similarly to get

$$\begin{aligned} \left| \int _0^t \langle \mathbf{c}_{22}\mathbf{g}_\tau , \varvec{\sigma }^{h}\,\mathbf{n}\rangle _{{{\mathcal {F}}^{N}_h}} \, d\tau \right| \le \mathrm {D}_{*}^{-1/2} \int _0^t \Vert \mathbf{g}_\tau \Vert _{1/2, {\varGamma }_N} \Vert \mathbf{c}_{22}^{1/2} \varvec{\sigma }^{h}\mathbf{n}\Vert _{0,{{\mathcal {F}}^{N}_h}}\, d\tau \;. \end{aligned}$$
(50)

Next, we notice that for each \(t\in [0,T]\), the map \(\mathbf{g}(t)\) belongs to \(\mathbf{H}^{1/2}({\varGamma }_N)\). The inverse trace theorem [1] guarantees that the trace operator has a continuous right inverse operator, say \(\mathfrak {T}: \mathbf{H}^{1/2}({\varGamma }_N) \longrightarrow \mathbf{H}^{1}({\varOmega })\). Hence, taking into account the scaling of the parameter \(\mathbf{c}_{22}\) and using the trace inequality (15) we have

$$\begin{aligned} \begin{aligned} \left\| \mathbf{c}_{22}^{1/2}\mathbf{g}\right\| _{0,F}^{2}=c_2 h_F k^{-2} \{{\mathcal {D}}\}^{-1} \Vert \mathbf{g}\Vert _{0,F}^{2} \lesssim c_2 k^{-2} \mathrm {D}_{*}^{-1}\Vert \mathbf{g}\Vert _{1,K}^{2}&\forall \, F\in {{\mathcal {F}}^{N}_h}, F \subset \partial K\;, \end{aligned} \end{aligned}$$

where, with an abuse of notation, we have denoted by \(\mathbf{g}=\mathfrak {T}\mathbf{g}\) the extension of \(\mathbf{g}\). Summing over all \(F\in {{\mathcal {F}}^{N}_h}\) and using the continuity of the operator \(\mathfrak {T}\) we get

$$\begin{aligned} \left\| \mathbf{c}_{22}^{1/2} \mathbf{g}_\tau \right\| ^{2}_{0,{{\mathcal {F}}^{N}_h}} \lesssim \sum _{K \in \mathcal {T}_h} \mathrm {D}_{*}^{-1}\Vert \mathbf{g}_\tau \Vert _{1,K}^{2} = \mathrm {D}_{*}^{-1}\Vert \mathbf{g}_\tau \Vert ^{2}_{1,{\varOmega }} \lesssim \mathrm {D}_{*}^{-1}\Vert \mathbf{g}_\tau \Vert _{1/2, {\varGamma }_N}^{2}. \end{aligned}$$
(51)

Substitution of the above estimate in (50) gives (32). To prove (33), we use integration by parts formula (8) with \(\mathbf{w}=\mathbf{g}\) and \(\mathbf{z}=\mathbf{u}^h\), together with triangle and Jensen’ inequality to get

$$\begin{aligned} \left| \int _0^t \langle \mathbf{g}, \mathbf{u}^{h}_{\tau }\rangle _{{{\mathcal {F}}^{N}_h}} \, d\tau \right| \le \left| \langle \mathbf{g}_{0},\mathbf{u}^{h}_0\rangle _{{{\mathcal {F}}^{N}_h}}\right| +\left| \langle \mathbf{g}, \mathbf{u}^{h}\rangle _{{{\mathcal {F}}^{N}_h}}\right| + \int _0^t \left| \langle \mathbf{g}_{\tau } , \mathbf{u}^{h}\rangle _{{{\mathcal {F}}^{N}_h}}\right| \,d\tau . \end{aligned}$$
(52)

Therefore, we only need to estimate the inner product \(|\langle \mathbf{g}, \mathbf{u}^{h}\rangle _{{{\mathcal {F}}^{N}_h}}|\), where the first argument could be either \(\mathbf{g}_0\), \(\mathbf{g}\) or \(\mathbf{g}_{\tau }\). Applying Hölder’s inequality, the trace inequality (16) and inequality (17) with \(\omega =F\in {{\mathcal {F}}^{N}_h}\) gives

$$\begin{aligned} \begin{aligned} \left| \int _{F} \mathbf{g}\mathbf{u}^{h} ds \right|&\le \Vert \mathbf{g}\Vert _{L^{q}(F)} \Vert \mathbf{u}^{h}\Vert _{L^{p}(F)} \lesssim \Vert \mathbf{g}\Vert _{L^{q}(F)} h^{-1/p} \Vert \mathbf{u}^{h}\Vert _{\varvec{W}^{1,p}(K)} \\&\lesssim \Vert \mathbf{g}\Vert _{L^{q}(F)} h^{-1/p} h^{d(\frac{1}{p}-\frac{1}{2})}\Vert \mathbf{u}^{h}\Vert _{1,K} = \Vert \mathbf{g}\Vert _{L^{q}(F)} h^{\frac{2d-2 -dp}{2p}} \Vert \mathbf{u}^{h}\Vert _{1,K}\;, \end{aligned} \end{aligned}$$

where, for any \(F\in {{\mathcal {F}}^{N}_h}\), K is the only element in \({\mathcal {T}}_h\) such that \(F \subset \partial K\). Setting now \(p=(2d-2)/d\) (whose conjugate is \(q=\frac{(2d-2)}{(d-2)}\)) the above inequality becomes

$$\begin{aligned} \left| \int _{F} \mathbf{g}\mathbf{u}^{h} ds \right| \lesssim \Vert \mathbf{g}\Vert _{L^{q}(F)} \Vert \mathbf{u}^{h}\Vert _{1,K}. \end{aligned}$$
(53)

Notice that \(q=\infty \) for \(d=2\) and \(q=4\) for \(d=3\). Using that F is a \((d-1)\) dimensional object and using the continuity of the Sobolev embedding \(H^{1}(F) \longrightarrow L^{q}(F)\), [1], we have

$$\begin{aligned} \begin{aligned}&\Vert \mathbf{g}\Vert _{\mathbf{L}^{q}(F)} \lesssim \Vert \mathbf{g}\Vert _{1, F}&\forall \, \mathbf{g}\in \mathbf{H}^{1}(F),&q=\frac{(2d-2)}{(d-2)}. \end{aligned} \end{aligned}$$

Substituting the above bound in (53) and summing over all faces \(F \in {\mathcal {F}}_h^N\), gives

$$\begin{aligned} \begin{aligned} \left| \langle \mathbf{g}, \mathbf{u}^{h}\rangle _{{{\mathcal {F}}^{N}_h}}\right| \lesssim&\Vert \mathbf{g}\Vert _{1,{\varGamma }_N}\left( \Vert \mathbf{u}^{h}\Vert _{0,\mathcal {T}_h}^{2} + \left| \mathbf{u}^{h} \right| _{1,\mathcal {T}_h}^{2} \right) ^{1/2}. \end{aligned} \end{aligned}$$
(54)

Applying the discrete Poincaré and Korn inequalities [8, 9], and the bound in (5), we have

$$\begin{aligned} \Vert \mathbf{u}^{h}\Vert _{0,\mathcal {T}_h}^{2} + |\mathbf{u}^{h}|_{1,\mathcal {T}_h}^{2}&\lesssim \Vert \varvec{\varepsilon }{(\mathbf{u}^{h})}\Vert _{0,\mathcal {T}_h}^{2} + \sum _{F\in {{\mathcal {F}}^{o}_h}\cup {{\mathcal {F}}^{D}_h}} \left\| h_F^{-1/2}[\![ \mathbf{u}^{h}]\!]\right\| _{0,F}^{2} \lesssim \mathrm {D}_{*}^{-1} \left\| \mathbf{u}^{h} \right\| _{a}^{2}. \end{aligned}$$

Finally, substituting the above estimate in (54) yields

$$\begin{aligned} \begin{aligned} \left| \langle \mathbf{g}, \mathbf{u}^{h}\rangle _{{{\mathcal {F}}^{N}_h}}\right| \lesssim&\Vert \mathbf{g}\Vert _{1,{\varGamma }_N}\mathrm {D}_{*}^{-1} \left\| \mathbf{u}^{h} \right\| _{a}. \end{aligned} \end{aligned}$$

Applying now the above estimate to each term in (52), we finally get

$$\begin{aligned} \begin{aligned} \left| \langle \mathbf{g}_{0} , \mathbf{u}^{h}_0\rangle _{{{\mathcal {F}}^{N}_h}} \right|&\lesssim \mathrm {D}_{*}^{-1} \left\| \mathbf{g}_{0} \right\| _{1,{\varGamma }_N} \left\| \mathbf{u}^{h}_0 \right\| _{a}, \\ \int _0^t \left| \langle \mathbf{g}_{\tau } , \mathbf{u}^{h}\rangle _{{{\mathcal {F}}^{N}_h}} \right| \,d\tau \lesssim&\int _0^t \mathrm {D}_{*}^{-1/2} \Vert \mathbf{g}_{\tau }\Vert _{1,{\varGamma }_N} \left\| \mathbf{u}^{h} \right\| _{a} \,d\tau .&\\ \left| \langle \mathbf{g}(t) , \mathbf{u}^{h}(t)\rangle _{{{\mathcal {F}}^{N}_h}} \right|&\lesssim \frac{ \mathrm {D}_{*}^{-1}}{\epsilon } \left\| \mathbf{g}(t) \right\| _{1,{\varGamma }_N}^2 + \epsilon \left\| \mathbf{u}^{h}(t) \right\| _{a}^2 , \end{aligned} \end{aligned}$$

where for the last term we have also used the arithmetic geometric inequality with \(\epsilon >0\). Substitution of the above estimates into (52) completes the proof. \(\square \)

Proof

(Proof of Lemma  2) We start rewriting the second equation in (22) with \(\varvec{\tau }={\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h)\)

$$\begin{aligned} \Vert \mathcal {D}^{1/2}\varvec{\varepsilon }{(\mathbf{u}^{h})}\Vert _{0,\mathcal {T}_h}^{2}= & {} ( \varvec{\varepsilon }(\mathbf{u}^h), {\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h))_{\mathcal {T}_h}= ( {\mathcal {A}}\varvec{\sigma }^h , {\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h))_{\mathcal {T}_h} \nonumber \\&+\langle \mathbf{c}_{22}[\![ \varvec{\sigma }^{h}]\!], [\![ {\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h)]\!]\rangle _{{{\mathcal {F}}^{o}_h}} +\langle \mathbf{c}_{22}(\varvec{\sigma }^{h}\mathbf{n}-\mathbf{g}), {\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h) \,\mathbf{n}\rangle _{{{\mathcal {F}}^{N}_h}} \nonumber \\&+ \langle [\![ \mathbf{u}^h]\!], \{{\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h)\}\rangle _{{{\mathcal {F}}^{o}_h}\cup {{\mathcal {F}}^{D}_h}}-\langle \{\mathbf{u}^{h}\}_{(1-\delta )}-\{\mathbf{u}^h\}, [\![ {\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h)]\!] \rangle _{{{\mathcal {F}}^{o}_h}},\qquad \quad \end{aligned}$$
(55)

Prior to estimate all terms on the right-hand side above, we note that Agmon’s (14) and inverse inequalities (18), and the definition of \(\mathbf{c}_{22}\) give

$$\begin{aligned} \left\| \mathbf{c}_{22}^{1/2} [\![ {\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h)]\!] \right\| _{0,F} \lesssim \Vert {\mathcal {D}}^{1/2}\varvec{\varepsilon }(\mathbf{u}^h) \Vert _{0,K},\quad \left\| \mathbf{c}_{22}^{1/2} \{{\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h)\}_{\delta } \right\| _{0,F} \lesssim \Vert {\mathcal {D}}^{1/2}\varvec{\varepsilon }(\mathbf{u}^h) \Vert _{0,K}\;. \end{aligned}$$
(56)

Using Cauchy–Schwarz inequality and the first estimate above, the first three terms in (55) can be bounded by

$$\begin{aligned} \left| ( {\mathcal {A}}\varvec{\sigma }^h , {\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h))_{\mathcal {T}_h} \right|\le & {} \Vert \mathcal {A}^{1/2}\varvec{\sigma }^{h} \Vert _{0,\mathcal {T}_h} \Vert \mathcal {D}^{1/2}\varvec{\varepsilon }{(\mathbf{u}^{h})}\Vert _{0,\mathcal {T}_h}, \\ \left| \langle \mathbf{c}_{22}[\![ \varvec{\sigma }^{h}]\!], [\![ {\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h)]\!]\rangle _{{{\mathcal {F}}^{o}_h}} \right|\lesssim & {} \left\| \mathbf{c}_{22}^{1/2} [\![ \varvec{\sigma }^h]\!]\right\| _{0,{{\mathcal {F}}^{o}_h}} \Vert {\mathcal {D}}^{1/2}\varvec{\varepsilon }(\mathbf{u}^h) \Vert _{0,K} \\ \left| \langle \mathbf{c}_{22}(\varvec{\sigma }^{h}\mathbf{n}-\mathbf{g}), {\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h) \,\mathbf{n}\rangle _{{{\mathcal {F}}^{N}_h}} \right|\lesssim & {} \left( \Vert \mathbf{c}_{22}^{1/2} [\![ \varvec{\sigma }^h]\!] \Vert _{0,{{\mathcal {F}}^{N}_h}} + \Vert \mathbf{c}_{22}^{1/2} \mathbf{g}\Vert _{0,{{\mathcal {F}}^{N}_h}} \right) \Vert {\mathcal {D}}^{1/2}\varvec{\varepsilon }(\mathbf{u}^h) \Vert _{0,K} . \end{aligned}$$

To estimate the last two terms in (55), notice that \(\mathbf{c}_{11}\mathbf{c}_{22}=O(1)\) since,

$$\begin{aligned} \mathbf{c}_{11}^{-1} = \left( c_1 h_F^{-1} k^{2} \{{\mathcal {D}}\}\right) ^{-1} = (c_1 c_2)^{-1} c_2 h_F k^{-2} \{{\mathcal {D}}\}^{-1} = (c_1 c_2)^{-1} \mathbf{c}_{22}. \end{aligned}$$

Then, the Cauchy Schwarz inequality and (56) give for the fourth term

$$\begin{aligned} \left| \langle [\![ \mathbf{u}^h]\!], \{{\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h)\}\rangle _{{{\mathcal {F}}^{o}_h}\cup {{\mathcal {F}}^{D}_h}} \right|\lesssim & {} \left\| \mathbf{c}_{11}^{1/2} [\![ \mathbf{u}^h]\!]\right\| _{0,{{\mathcal {F}}^{o}_h}\cup {{\mathcal {F}}^{D}_h}} \; \Vert \mathbf{c}_{22}^{1/2} \{{\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h)\} \Vert _{0,{{\mathcal {F}}^{o}_h}\cup {{\mathcal {F}}^{D}_h}}\nonumber \\\lesssim & {} \left\| \mathbf{c}_{11}^{1/2} [\![ \mathbf{u}^h]\!]\right\| _{0,{{\mathcal {F}}^{o}_h}\cup {{\mathcal {F}}^{D}_h}} \; \Vert {\mathcal {D}}^{1/2}\varvec{\varepsilon }(\mathbf{u}^h) \Vert _{0,{\varOmega }}. \end{aligned}$$

Analogously, the last term can be estimated using identity (13) and (56)

$$\begin{aligned} \left| - \langle \{\mathbf{u}^{h}\}_{(1-\delta )}-\{\mathbf{u}^h\}, [\![ {\mathcal {D}}\varvec{\varepsilon }(\mathbf{u}^h)]\!] \rangle _{{{\mathcal {F}}^{o}_h}} \right| \lesssim \left\| \mathbf{c}_{11}^{1/2} [\![ \mathbf{u}^{h}]\!] \right\| _{0,{{\mathcal {F}}^{o}_h}} \Vert {\mathcal {D}}^{1/2}\varvec{\varepsilon }(\mathbf{u}^h) \Vert _{0,{\varOmega }}. \end{aligned}$$

Finally, substituting all the estimates into (55) we obtain

$$\begin{aligned} \Vert \mathcal {D}^{1/2}\varvec{\varepsilon }{(\mathbf{u}^{h})}\Vert _{0,\mathcal {T}_h} \lesssim \Vert \mathcal {A}^{1/2}\varvec{\sigma }^{h} \Vert _{0,\mathcal {T}_h} + \left\| \mathbf{c}_{11}^{1/2} [\![ \mathbf{u}^h]\!]\right\| _{0,{{\mathcal {F}}^{o}_h}} + \left\| \mathbf{c}_{22}^{1/2} [\![ \varvec{\sigma }^h]\!] \right\| _{0,{{\mathcal {F}}^{N}_h}} + \left\| \mathbf{c}_{22}^{1/2} \mathbf{g}\right\| _{0, {{\mathcal {F}}^{N}_h}}, \end{aligned}$$

The proof is then concluded by arguing as in the proof of (32) in Lemma 1 (using estimate (51))

$$\begin{aligned} \left\| \mathbf{c}_{22}^{1/2} \mathbf{g} \right\| ^{2}_{0,{{\mathcal {F}}^{N}_h}} \lesssim \mathrm {D}_{*}^{-1}\Vert \mathbf{g}\Vert _{1/2, {\varGamma }_N}^{2}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonietti, P.F., Ayuso de Dios, B., Mazzieri, I. et al. Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem. J Sci Comput 68, 143–170 (2016). https://doi.org/10.1007/s10915-015-0132-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0132-2

Keywords

Mathematics Subject Classification

Navigation