Skip to main content
Log in

Landmark-Matching Transformation with Large Deformation Via n-dimensional Quasi-conformal Maps

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a new method to obtain landmark-matching transformations between n-dimensional Euclidean spaces with large deformations. Given a set of feature correspondences, our algorithm searches for an optimal folding-free mapping that satisfies the prescribed landmark constraints. The standard conformality distortion defined for mappings between 2-dimensional spaces is first generalized to the n-dimensional conformality distortion K(f) for a mapping f between n-dimensional Euclidean spaces \((n \ge 3)\). We then propose a variational model involving K(f) to tackle the landmark-matching problem in higher dimensional spaces. The generalized conformality term K(f) enforces the bijectivity of the optimized mapping and minimizes its local geometric distortions even with large deformations. Another challenge is the high computational cost of the proposed model. To tackle this, we have also proposed a numerical method to solve the optimization problem more efficiently. Alternating direction method with multiplier is applied to split the optimization problem into two subproblems. Preconditioned conjugate gradient method with multi-grid preconditioner is applied to solve one of the sub-problems, while a fixed-point iteration is proposed to solve another subproblem. Experiments have been carried out on both synthetic examples and lung CT images to compute the diffeomorphic landmark-matching transformation with different landmark constraints. Results show the efficacy of our proposed model to obtain a folding-free landmark-matching transformation between n-dimensional spaces with large deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  2. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  3. Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples, vol. 109. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Regist. Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  5. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial. SIAM (2000)

  6. La Casciao, M., Sclaroff, S., Athitsos, V.: Fast, reliable head tracking under varying illumination: an approach based on registration of texture-mapped 3d models. IEEE Trans. Pattern Anal. Mach. Intell. 22(4), 322–336 (2000)

    Article  Google Scholar 

  7. Chanwimaluang, T., Fan, G., Fransen, S.R.: Hybrid retinal image registration. IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006)

    Article  Google Scholar 

  8. Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE Trans. Med. Imaging 20(7), 568–582 (2001)

    Article  Google Scholar 

  9. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  10. Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56(3), 587–600 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Erikson, A.P., Astrom, K.: On the bijectivity of thin-plate splines. Anal. Sci. Eng. Beyond Springer Proc. Math. 6, 93–141 (2012)

    Article  MathSciNet  Google Scholar 

  12. Gardiner, F.P., Lakic, N.: Quasiconformal Teichmüller Theory. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2000)

    MATH  Google Scholar 

  13. Ghadimi, E., Teixeira, A., Shames, I., Johansson, M.: Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems. IEEE Trans. Autom. Control 60(3), 644–658 (2015)

    Article  MathSciNet  Google Scholar 

  14. Glaunes, J., Qiu, A., Miller, M.I., Younes, L.: Large deformation diffeomorphic metric curve mapping. Int. J. Comput. Vis. 80(3), 317–336 (2008)

    Article  Google Scholar 

  15. Glaunes, J., Trouvé, A., Younes, L.: Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching. In: Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference, vol 2, pp. 712–718 (2004)

  16. Glaunes, J., Vaillant, M., Miller, M.I.: Landmark matching via large deformation diffeomorphisms on the sphere. J. Math. Imaging Vis. 20(8), 179–200 (2004)

    Article  MathSciNet  Google Scholar 

  17. Glocker, B., Sotiras, A., Komodakis, N., Paragios, N.: Deformable medical image registration: setting the state of the art with discrete methods. Ann. Rev. Biomed. Eng. 13, 219–244 (2011)

    Article  Google Scholar 

  18. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, vol. 9. SIAM, Philadelphia, PA (1989)

    Book  MATH  Google Scholar 

  19. Glowinski, R., Marrocco, A.: Sur lapproximation par elements lnis dordre un, et la resolution par penalisation-dualite dune classe de problemes de dirichlet nonlineaires. Rev. Francaise dAut. Inf. Rech. Oper. R–2, 41–76 (1975)

    MathSciNet  Google Scholar 

  20. Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems, vol. 3. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  21. Guo, H., Rangarajan, A., Joshi, S.: Diffeomorphic point matching. In: Paragios, N., Chen, Y., Faugeras, O (eds.) Handbook of Mathematical Models in Computer Vision, pp. 205–219. Springer-Verlag, New York (2006)

  22. Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G.: Conformal surface parameterization for texture mapping. IEEE Trans. Vis. Comput. Graph. 6(2), 181–189 (2000)

    Article  Google Scholar 

  23. He, J., Christensen, G.E.: Large deformation inverse consistent elastic image registration. In: Information Processing in Medical Imaging, vol. 2723, pp. 438–449 (2003)

  24. Heckbert, P.S.: Survey of texture mapping. IEEE Comput. Graph. Appl. 6(11), 56–67 (1986)

    Article  Google Scholar 

  25. Hill, D.L., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration. Phys. Med. Biol. 46(1), R1 (2001)

    Article  Google Scholar 

  26. Huang, X., Sun, Y., Metaxas, D., Sauer, F., Xu, C.: Hybrid image registration based on configural matching of scale-invariant salient region features. In: IEEE on Computer Vision and Pattern Recognition Workshop, 2004, CVPRW’04, vol. 4, pp. 167–167 (2004)

  27. Johnson, H.J., Christensen, G.E.: Consistent landmark and intensity-based image registration. IEEE Trans. Med. Imaging 21(5), 450–461 (2002)

    Article  Google Scholar 

  28. Joshi, S.C., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)

    Article  Google Scholar 

  30. Kovalsky, S.Z., Aigerman, N., Basri, R., Lipman, Y.: Controlling singular values with semidefinite programming. ACM TOG 33(4), 68 (2014)

    Article  Google Scholar 

  31. Kybic, J., Unser, M.: Fast parametric elastic image registration. IEEE Trans. Image Process. 12(11), 1427–1442 (2003)

    Article  Google Scholar 

  32. Lam, K.C., Gu, X.F., Lui, L.M.: Genus-one surface registration via teichmuller extremal mapping. MICCAI 8675, 25–32 (2014)

    Google Scholar 

  33. Lam, K.C., Lui, L.M.: Landmark and intensity based registration with large deformations via quasi-conformal maps. SIAM J. Imaging Sci. 7(4), 2364–2392 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, 2nd edn. Springer, Berlin (1973)

    Google Scholar 

  35. Leow, A.D., Yanovsky, I., Chiang, M.C., Lee, A.D., Klunder, A.D., Lu, A., Becker, J.T., Davis, S.W., Toga, A.W., Thompson, P.M.: Statistical properties of jacobian maps and the realization of unbiased large-deformation nonlinear image registration. IEEE Trans. Med. Imaging 26(6), 822–832 (2007)

    Article  Google Scholar 

  36. Lin, T., Le Guyader, C., Dinov, I., Thompson, P., Toga, A., Vese, L.: Gene expression data to mouse atlas registration using a nonlinear elasticity smoother and landmark points constraints. J. Sci. Comput. 50(3), 586–609 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lipman, Y.: Bounded distortion mapping spaces for triangular meshes. ACM TOG 31(4), 108 (2012)

    Article  Google Scholar 

  38. Lui, L.M., Lam, K.C., Wong, T.W., Gu, X.F.: Texture map and video compression using beltrami representation. SIAM J. Imaging Sci. 6(4), 1880–1902 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lui, L.M., Thiruvenkadam, S., Wang, Y.L., Chan, T.F., Thompson, P.M.: Optimized conformal parameterization of cortical surfaces using shape based matching of landmark curves. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI, vol 3, pp. 52–78 (2008)

  40. Lui, L.M., Thiruvenkadam, S., Wang, Y.L., Thompson, P.M., Chan, T.F.: Optimized conformal surface registration with shape-based landmark matching. SIAM J. Imaging Sci. 3(1), 52–78 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lui, L.M., Wang, Y.L., Chan, T.F., Thompson, P.: Landmark constrained genus zero surface conformal mapping and its application to brain mapping research. Appl. Numer. Math. 57(5–7), 847–858 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lui, L.M., Wen, C.F.: Geometric registration of high-genus surfaces. SIAM J. Imaging Sci. 7(1), 337–365 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Modat, M., McClelland, J., Ourselin, S.: Lung registration using the niftyreg package. In: Medical Image Analysis for the Clinic-A Grand Challenge, Workshop Proceedings of from MICCAI 2010, pp. 33–42 (2010)

  44. Paquin, D., Levy, D., Xing, L.: Hybrid multiscale landmark and deformable image registration. Math. Biosci. Eng. 4(4), 711–737 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Reddy, B.S., Chatterji, B.N.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

    Article  Google Scholar 

  46. Tyrrell Rockafellar, R.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rohr, K., Stiehl, H.S., Sprengel, R., Buzug, T.M., Weese, J., Kuhn, M.H.: Landmark-based elastic registration using approximating thin-plate splines. IEEE Trans. Med. Imaging 20(6), 526–534 (2001)

    Article  Google Scholar 

  48. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)

  49. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)

    Article  Google Scholar 

  50. Tatebe, O.: The multigrid preconditioned conjugate gradient method. In: NASA, Langley Research Center, The Sixth Copper Mountain Conference on Multigrid Methods, vol 2, pp. 621–634 (1993)

  51. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)

    Article  Google Scholar 

  52. Tosun, D., Rettmann, M.E., Prince, J.L.: Mapping techniques for aligning sulci across multiple brains. Med. Image Anal. 8(3), 295–309 (2004)

    Article  Google Scholar 

  53. Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Academic Press, San Diego, CA (2000)

    MATH  Google Scholar 

  54. Vaillant, M., Glaunes, J.: Surface Matching Via Currents. Information Processing in Medical Imaging. Springer, Berlin (2005)

    Google Scholar 

  55. Vannier, M.W., Marsh, J.L.: Three-dimensional imaging, surgical planning, and image-guided therapy. Radiol. Clin. N. Am. 34(3), 545–563 (1996)

    Google Scholar 

  56. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45(1), S61–S72 (2009)

    Article  Google Scholar 

  57. Wang, Y.L., Lui, L.M., Chan, T.F., Thompson, P.M.: Optimization of brain conformal mapping with landmarks. MICCAI 3750, 675–683 (2005)

    Google Scholar 

  58. Yeo, B.T.T., Sabuncu, M.R., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: fast diffeomorphic landmark-free surface registration. IEEE Trans. Medical Imaging 29(3), 650–668 (2010)

    Article  Google Scholar 

  59. Zeng, W., Gu, X.F.: Registration for 3d surfaces with large deformations using quasi-conformal curvature flow. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 2457–2464 (2011)

  60. Zhu, S., Ma, K.K.: A new diamond search algorithm for fast block-matching motion estimation. IEEE Trans. Image Process. 9(2), 287–290 (2000)

    Article  MathSciNet  Google Scholar 

  61. Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the freely available lung CT data from the Deformable Image722 Registration Laboratory (www.dir-lab.com). Lok Ming Lui is supported by RGC GRF (CUHK Project ID: 2130363; Reference: 402413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lok Ming Lui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.T., Lam, K.C. & Lui, L.M. Landmark-Matching Transformation with Large Deformation Via n-dimensional Quasi-conformal Maps. J Sci Comput 67, 926–954 (2016). https://doi.org/10.1007/s10915-015-0113-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0113-5

Keywords

Navigation