Skip to main content
Log in

A Numerical Method for Simulation of Microflows by Solving Directly Kinetic Equations with WENO Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A numerical method for simulation of transitional-regime gas flows in microdevices is presented. The method is based on solving relaxation-type kinetic equations using high-order shock capturing weighted essentially non-oscillatory (WENO) schemes in the coordinate space and the discrete ordinate techniques in the velocity space. In contrast to the direct simulation Monte Carlo (DSMC) method, this approach is not subject to statistical scattering and is equally efficient when simulating both steady and unsteady flows. The presented numerical method is used to simulate some classical problems of rarefied gas dynamics as well as some microflows of practical interest, namely shock wave propagation in a microchannel and steady and unsteady flows in a supersonic micronozzle. Computational results are compared with Navier–Stokes and DSMC solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Alekseenko, A.M.: Numerical properties of high order discrete velocity solutions to the BGK kinetic equation. Appl. Numer. Math. 61, 410–427 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alsmeyer, H.: Density profiles in argon and nitrogen shock waves measured by the absorbtion of an electron beam. J. Fluid Mech. 74, 497–513 (1976)

    Article  Google Scholar 

  3. Andries, P., Le Tallec, P., Perlat, J., Perthame, B.: The Gaussian-BGK model of Boltzmann equation with small Prandtl numbers. Eur. J. Mech. B Fluids 19, 813–830 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aoki, K., Kanba, K., Takata, S.: Numerical analysis of a supersonic rarefied gas flow past a flat plate. Phys. Fluids 9, 1144–1161 (1997)

    Article  Google Scholar 

  5. Aristov, V.V.: Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows. Kluwer, Dordrecht (2001)

    Book  MATH  Google Scholar 

  6. Aristov, V.V., Frolova, A.A., Zabelok, S.A.: Supersonic flows with nontraditional transport described by kinetic methods. Commun. Comput. Phys. 11, 1334–1346 (2012)

    Google Scholar 

  7. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  8. Bird, G.A.: Molecular Gas Dynamics and Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994)

    Google Scholar 

  9. Brouillette, M.: Shock waves at microscales. Shock Waves 13, 3–12 (2004)

    Article  Google Scholar 

  10. Brull, S., Schneider, J.: A new approach for the ellipsoidal statistical model. Cont. Mech. Thermodyn. 20(2), 63–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carrillo, J.A., Gamba, I., Majorana, A., Shu, C.W.: A direct solver for 2D non-stationary Boltzmann-Poisson systems for semiconductor devices: a MESFET simulation by WENO-Boltzmann schemes. J. Comput. Electron. 2, 375–380 (2003)

    Article  Google Scholar 

  12. Chu, C.K.: Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids 8, 12–22 (1965)

    Article  Google Scholar 

  13. Chigullapalli, S., Venkattraman, A., Ivanov, M.S., Alexeenko, A.A.: Entropy considerations in numerical simulations of non-equilibrium rarefied flows. J. Comput. Phys. 229, 2139–2158 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duff, R.: Shock-tube performance at low initial pressure. Phys. Fluids 2, 207–216 (1959)

    Article  MATH  Google Scholar 

  15. Egorov, I.V., Erofeev, A.I.: Continuum and kinetic approaches to the simulation of the hypersonic flow past a flat plate. Fluid Dyn. 32, 112–122 (1997)

    Article  MATH  Google Scholar 

  16. Elizarova, T.G., Graur, I.A., Chpoun, A., Lengrand, J.C.: Comparition of continuum and molecular approaches for rarefied gas flows. In: Proceedings of 19th International Symposium on Rarefied Gas Dynamics, vol. 2, pp. 780–786 (1995)

  17. Elizarova, T.G., Shirokov, I.A., Montero, S.: Numerical simulation of shock-wave structure for argon and helium. Phys. Fluids 17(6) 068101 (2005)

    Google Scholar 

  18. Filbet, F., Russo, G.: High order numerical methods for the space non-homogeneous Boltzmann equation. J. Comput. Phys. 186, 457–480 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gad-el-Hak, M.: The fluid mechanics of microdevices—the Freeman scholar lecture. J. Fluids Eng. 121, 5–33 (1999)

    Article  Google Scholar 

  20. Gilbarg, D., Paolucci, D.: The structure of shock waves in the continuum theory of fluids. J. Rat. Mech. Anal. 2, 617–642 (1953)

    MathSciNet  MATH  Google Scholar 

  21. Graur, I.A., Polikarpov, A.P.: Comparison of different kinetic models for the heat transfer problem. Heat Mass Transf. 46, 237–244 (2009)

    Article  Google Scholar 

  22. Ho, C.M., Tai, Y.C.: Micro-electro-mechanical systems (MEMS) and fluid flows. Ann. Rev. Fluid Mech. 30, 579–612 (1998)

    Article  Google Scholar 

  23. Holway, L.H.: New statistical models for kinetic theory: methods of construction. Phys. Fluids 9, 1658–1673 (1966)

    Article  Google Scholar 

  24. Huang, A.B., Hartley, D.L.: Kinetic theory of the sharp leading edge problem in supersonic flow. Phys. Fluids 12, 96–108 (1969)

    Article  Google Scholar 

  25. Huang, A.B., Hwang, P.F.: Supersonic leading edge problem according to the ellipsoidal model. Phys. Fluids 13, 309–317 (1970)

    Article  Google Scholar 

  26. Ivanov, M.S., Gimelshein, S.F.: Computational hypersonic rarefied flows. Ann. Rev. Fluid Mech. 30, 469–505 (1998)

    Article  MathSciNet  Google Scholar 

  27. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Karniadakis, G., Beskok, A., Aluru, N.: Mictoflows and Nanoflows, Fundamentals and Simulation. Springer, New York (2005)

    Google Scholar 

  29. Kolobov, V.I., Arslanbekov, R.R., Aristov, V.V., Frolova, A.A., Zabelok, S.A.: Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement. J. Comput. Phys. 223, 589–608 (2007)

    Article  MATH  Google Scholar 

  30. Li, Z.H., Zhang, H.X.: Study on gas kinetic unified algorithm for flows from rarefied transition to continuum. J. Comput. Phys. 193, 708–738 (2004)

    Article  MATH  Google Scholar 

  31. Malkov, E.A., Ivanov, M.S.: Particle-in-cell method for solving of the Boltzmann equation. In: Proceedings of 27th International Symposium on Rarefied Gas Dynamics, vol. 2, pp. 940–945 (2011)

  32. Micci, M.M., Ketsdever, A.D.: Micropropulsion for Small Spacecraft. Progress in Astronautics and Astronautics Series, vol. 187, AIAA (2000)

  33. Mieussens, L.: Discrete velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries. J. Comput. Phys. 162, 429–466 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mieussens, L., Struchtrup, H.: Numerical comparison of BhatnagarGrossKrook models with proper Prandtl number. Phys. Fluids 16, 2797 (2004)

    Article  Google Scholar 

  35. Mirels, H.: Test time in low pressure shock tube. Phys. Fluids 6, 1201–1214 (1963)

    Article  MATH  Google Scholar 

  36. Morinishi, K.: Numerical simulation for gas microflows using Boltzmann equation. Comput. Fluids 35, 978–985 (2006)

    Article  MATH  Google Scholar 

  37. Ohwada, T.: Heat flow and temperature and density distributions in a rarefied gas between parallel plates with different temperatures. Finite-difference analysis of the nonlinear Boltzmann equation for hard-sphere molecules. Phys. Fluids 8, 2153–2160 (1996)

    Article  MATH  Google Scholar 

  38. Palczewski, A., Schneider, J.: Existence, stability, and convergence of solutions of discrete velocity models to the Boltzmann equation. J. Stat. Phys. 91(1–2), 307–326 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pareschi, L., Perthame, B.: A Fourier spectral method for homogeneous Boltzmann equations. Transp. Theory Stat. Phys. 25, 369–383 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pareschi, L., Russo, G.: Numerical solution of the Boltzmann equation. I. Spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37, 1217–1245 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pullin, D.I., Harvey, J.K.: A numerical simulation of the rarefied hypersonic flat-plate problem. J. Fluid Mech. 78, 689–707 (1976)

    Article  MATH  Google Scholar 

  42. Richter, G.: On the convergence of the discrete ordinate method in kinetic theory. SIAM J. Appl. Math 25(2), 149–157 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  43. Robben, F., Talbot, L.: Measurement of shock wave thickness by electron beam fluorescence method. Phys. Fluids 9, 633–643 (1966)

    Article  Google Scholar 

  44. Roshko, A.: On flow duration in low pressure shock tube. Phys. Fluids 3, 835–842 (1960)

    Article  Google Scholar 

  45. Rykov, V.A., Titarev, V.A., Shakhov, E.M.: Rarefied Poiseuille flow in elliptical and rectangular tubes. Fluid Dyn 46(3), 456–466 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Segal Ben, M.: Shock wave Structure Using Nonlinear Model Boltzmann Equations. Stanford University, Stanford (1971)

    Google Scholar 

  47. Shakhov, E.M.: Longitudinal rarefied gas flow over a plate. Fluid Dyn. 8, 275–281 (1973)

    Article  Google Scholar 

  48. Shakhov, E.M.: Method for Investigation of Rarefied Gas Motion. Moscow, Nauka (1974) (in Russian)

  49. Shakhov, E.M.: Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3, 95–96 (1968)

    Article  Google Scholar 

  50. Shen, C.: Rarefied Gas Dynamics. Fundamentals, Simulations and Microflows. Springer, Berlin (2005)

  51. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shockcapturing schemes. J. Comp. Phys. 77, 439–471 (1988)

    Google Scholar 

  52. Sirovich, L., Thurber, J.: Sound Propagation According to Kinetic Models. AEC Research and Development Report NYO-9757. New York Univ., New York (1961)

  53. Stoer J., Bulirsch R.: Introduction to Numerical Analysis, 3rd edn. Springer, New York (2002)

  54. Struchtrup, H., et al.: Macroscopic Transport Equations for Rarefied Gas Flows. Springer, Berlin (2005)

    MATH  Google Scholar 

  55. Sun, M., Ogawa, T., Takayama, K.: Shock propagation in narrow channel. In: Proceedings of 23rd Internatioal Symposium on Shock Waves, paper 5610 (2002)

  56. Suresh, A., Hyunh, H.T.: Accurate monotonicity-preserving schemes with Runge-Kutta stepping. J. Comput. Phys. 136, 83–99 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tcheremissine, F.G.: Conservative evaluation of Boltzmann collision integral in discrete coordinates approximation. Comput. Math. Appl. 35, 215–221 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tcheremissine, F.G.: Solution to the Boltzmann kinetic equation for high-speed flows. Comput. Math. Math. Phys. 46, 315–329 (2006)

    Article  MathSciNet  Google Scholar 

  59. Greenspan, M.: Transmission of Sound Waves in Gases at Very Low Pressures. In: Mason, W.P. (ed.) Physical Acoustics. Principles and Methods. Properies of Gases, Liquids, and Solutions, vol. II, Part A, pp. 1–45. Academic Press, New York (1965)

  60. Teagan, W.P., Springer, G.S.: Heat-transfer and density distribution measurements between parallel plates in the transition regime. Phys. Fluids 11, 497–506 (1968)

    Article  Google Scholar 

  61. Titarev, V.A., Shakhov, E.M.: Numerical analysis of the spiral couette flow of a rarefied gas between coaxial cylinders. Comput. Math. Math. Phys. 46, 505–513 (2006)

    Article  MathSciNet  Google Scholar 

  62. Titarev, V.A.: Conservative numerical methods for model kinetic equations. Comput. Fluids 36, 1446–1459 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. Titarev, V.A.: Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains. Comput. Math. Math. Phys. 49, 1197–1211 (2009)

    Article  MathSciNet  Google Scholar 

  64. Titarev, V.A., Shakhov, E.M.: Nonisothermal gas flow in a long channel analyzed on the basis of the kinetic S-model. Comput. Math. Math. Phys. 50, 2131–2144 (2006)

    MathSciNet  Google Scholar 

  65. Udagawa, S., Maeno, K., Golubeva, I., Garen, W.: Interferometric signal measurement of shock waves and contact surfaces in small scale shock tube. In: Proceedings of 26th International Symposium on Shock Waves, paper 2060 (2007)

  66. Varghese, P.: Monte Carlo solution of the Boltzmann equation via a discrete velocity model. J. Comput. Phys. 230, 1265–1280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  67. Welander, P.: On the temperature jump in a rarefied gas. Ark. Fys. 7, 507–553 (1954)

    MathSciNet  MATH  Google Scholar 

  68. Yang, J.Y., Huang, J.C.: Rarefied flow computations using nonlinear model boltzmann equations. J. Comput. Phys 120, 323–339 (1995)

    Article  MATH  Google Scholar 

  69. Yen, S.M.: Temperature overshoot in shock waves. Phys. Fluids 9, 1417–1418 (1966)

    Article  Google Scholar 

  70. Zeitoun, D., Burtschell, Y.: Navier-Stokes computations in micro shock tubes. Shock Waves 15, 241–246 (2006)

    Article  MATH  Google Scholar 

  71. Zheng, Y., Struchtrup, H.: Ellipsoidal statistical Bhatnagar-Gross-Krook model with velocity-dependent collision frequency. Phys. Fluids 17, 127103 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to our colleagues Dr. Ye. Bondar for providing the results of his DSMC calculations and Dr. D. Khotyanovsky for his help with preparing the paper. This work has been supported by the Russian Academy of Sciences under the program “Fundamental problems of mechanics of interaction in technological and natural systems, materials and media” and by the Russian Foundation for Basic Research (RFBR Project No. 12-01-00776-a). This support is gratefully acknowledged

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shershnev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryavtsev, A.N., Shershnev, A.A. A Numerical Method for Simulation of Microflows by Solving Directly Kinetic Equations with WENO Schemes. J Sci Comput 57, 42–73 (2013). https://doi.org/10.1007/s10915-013-9694-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9694-z

Keywords

Navigation