Skip to main content
Log in

Mapped Hybrid Central-WENO Finite Difference Scheme for Detonation Waves Simulations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this study, we employ the fifth order hybrid Central-WENO conservative finite difference scheme (Hybrid) in the simulation of detonation waves. The Hybrid scheme is used to keep the solutions parts displaying high gradients and discontinuities always captured by the WENO-Z scheme in an essentially non-oscillatory manner while the smooth parts are highly resolved by an efficient and accurate central finite difference scheme and to speedup the computation of the overall scheme. To detect the smooth and discontinuous parts of the solutions, a high order multi-resolution algorithm by Harten is used. A tangent domain mapping is used to cluster grid points near the detonation front in order to enhance the grid resolution within half reaction zone that drives the development of complex nonlinear wave structures behind the front. We conduct several numerical comparisons among the WENO-Z scheme with a uniformly spaced grid, the WENO-Z scheme and the Hybrid scheme with the domain mapping in simulations of classical stable and unstable detonation waves. One- and two-dimensional numerical examples show that the increased grid resolution in the half reaction zone by the Mapped WENO-Z scheme and the Mapped Hybrid scheme allows a significant increased efficiency and accuracy when compares with the solution obtained with a highly resolved one computed by the WENO-Z scheme with a uniformly spaced grid. Results of three-dimensional simulations of stable, slightly unstable and highly unstable detonation waves computed by the Mapped Hybrid scheme are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sharpe, F., Sharpe, S.A.E.G.: Two-dimensional numerical simulations of idealized detonations. Proc. R. Soc. Lond. A 456, 2081–2100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azarenok, B.N., Tang, T.: Second-order Godunov-type scheme for reactive flow calculations on moving meshes. J. Comput. Phys. 206, 48–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang, Z.C., Yu, S.T., He, H., Chang, S.C.: Direct Calculation of Two- and Three-Dimensional Detonations by an Extended CE/SE Method, 2001–0476. AIAA, Washington (2001)

    Google Scholar 

  4. Papalexandris, M.V., Leonard, A., Dimotakis, P.E.: Unsplit algorithms for multidimensional system of hyperbolic conservation laws with source terms. Comput. Math. Appl. 44, 25–49 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dou, H.S., Tsai, H.M., Khoo, B.C., Qiu, J.: Simulations of detonation wave propagation in rectangular ducts using a three-dimensional WENO scheme. Combust. Flame 154, 644–659 (2008)

    Article  Google Scholar 

  6. Wang, C., Ning, J., Lei, J.: Numerical study on propagation of explosion wave in H2–O2 mixtures. Adv. Nat. Comput. 4222, 816–819 (2006)

    Article  Google Scholar 

  7. Wang, C., Ning, J.G., Ma, T.B.: Numerical simulation of detonation and multi-material interface tracking. Comput. Mater. Continua 22, 73–96 (2011)

    Google Scholar 

  8. Gao, Z., Don, W.S., Li, Z.: High order weighted essentially non-oscillation schemes for one-dimensional detonation wave simulations. J. Comput. Math. 29, 623–638 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, Z., Don, W.S., Li, Z.: High order weighted essentially non-oscillation schemes for two-dimensional detonation wave simulations. J. Sci. Comput. (2012). doi:10.1007/s10915-011-9569-0

    MathSciNet  Google Scholar 

  10. Tsuboi, N., Daimon, Y., Hayashi, A.K.: Three-dimensional numerical simulation of detonations in coaxial tubes. Shock Waves 18, 379–392 (2008)

    Article  MATH  Google Scholar 

  11. Bourlioux, A., Majda, A.J., Roytburd, V.: Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51, 303–343 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Papalexandris, M.V., Leonard, A., Dimotakis, P.E.: Unsplit schemes for hyperbolic conservation laws with source terms in one space detonation. J. Comput. Phys. 134, 31–61 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Quirk, J.J.: Godunov-type schemes applied to detonation flows. ICASE Rep. 93, 15 (1993)

    Google Scholar 

  14. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shu, C.W.: High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  MATH  Google Scholar 

  17. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3101–3211 (2008)

    Article  MathSciNet  Google Scholar 

  18. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Latini, M., Schilling, O., Don, W.S.: Effects of order of WENO flux reconstruction and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability. J. Comput. Phys. 221, 805–836 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zingg, D.W.: Comparison of high-accuracy finite difference methods for linear wave propagation. SIAM J. Sci. Comput. 22, 476–502 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bogey, C., Bailly, C.: A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194, 194–214 (2004)

    Article  MATH  Google Scholar 

  22. Costa, B., Don, W.S.: High order hybrid central-WENO finite difference scheme for conservation laws. J. Comput. Appl. Math. 204(2), 209–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Adams, N., Shariff, K.: High-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178(1), 81–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Costa, B., Don, W.S.: Multi-domain hybrid spectral-WENO methods for hyperbolic conservation laws. J. Comput. Phys. 224(2), 970–991 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Costa, B., Don, W.S., Gottlieb, D., Sendersky, R.: Two-dimensional multi-domain hybrid spectral-WENO methods for conservation laws. Commun. Comput. Phys. 1(3), 548–574 (2006)

    MATH  Google Scholar 

  27. Hill, D., Pullin, D.: Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks. J. Comput. Phys. 194, 435–450 (2004)

    Article  MATH  Google Scholar 

  28. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115, 319–338 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fornberg, B.: Calculation of weights in finite difference formulas. SIAM Rev. 40(3), 685–691 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vasilyev, O., Lund, T., Moin, P.: A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146(1), 82–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lee, H.I., Stewart, D.S.: Calculation for linear detonation instability: one-dimensional instability of plane detonation. J. Fluid Mech. 206, 103–132 (1990)

    Article  Google Scholar 

  33. Bourlioux, A., Majda, A.J.: Theoretical and numerical structure for unstable two-dimensional detonations. Combust. Flame 90, 211–229 (1992)

    Article  Google Scholar 

  34. Deledicque, V., Papalexandris, M.V.: Computational study of three-dimensional gaseous detonation structures. Combust. Flame 144, 821–837 (2006)

    Article  Google Scholar 

  35. Wang, C., Shu, C.-W., Han, W., Ning, J.: High resolution WENO simulation of 3D detonation waves. Preprint (BrownSC-2012-05)

  36. Don, W.S.: WENOpack http://www.math.hkbu.edu.hk/~wsdon/

Download references

Acknowledgements

The authors would like to acknowledge the funding support of this research by the RGC grant HKBU-200910 from Hong Kong University Grant Council. The first author also acknowledges the funding support of this research by the Fundamental Research Funds for the Central Universities (201213009) and Natural Science Foundation of Shandong Province (ZR2012AQ003). The second author would like to thank the School of Mathematical Sciences of Ocean University of China for hosting his visit while part of the research was conducted during the visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai Sun Don.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Z., Don, W.S. Mapped Hybrid Central-WENO Finite Difference Scheme for Detonation Waves Simulations. J Sci Comput 55, 351–371 (2013). https://doi.org/10.1007/s10915-012-9635-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9635-2

Keywords

Navigation