Skip to main content
Log in

Numerical Method Based on the Lattice Boltzmann Model for the Kuramoto-Sivashinsky Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we proposed a lattice Boltzmann model based on the higher-order moment method for the Kuramoto-Sivashinsky equation. A series of partial differential equations obtained by using multi-scale technique and Chapman-Enskog expansion. According to Hirt’s heuristic stability theory, the stability of the scheme can be controlled by modulating some special moments to design the fifth-order dispersion term and the sixth-order dissipation term. As results, the Kuramoto-Sivashinsky equation is recovered with higher-order truncation error. The numerical examples show the higher-order moment method can be used to raise the accuracy of the truncation error of the lattice Boltzmann scheme for the Kuramoto-Sivashinsky equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)

    Article  Google Scholar 

  2. Higuera, F.J., Jimènez, J.: Boltzmann approach to lattice gas simulations. Europhys. Lett. 9, 663–668 (1989)

    Article  Google Scholar 

  3. Qian, Y.H., D’humieres, D., Lallemand, P.: Lattice BGK model for Navier-Stokes equations. Europhys. Lett. 17(6), 479–484 (1992)

    Article  MATH  Google Scholar 

  4. Chen, H.D., Chen, S.Y., Matthaeus, M.H.: Recovery of the Navier-Stokes equations using a lattice Boltzmann gas method. Phys. Rev. A 45, 5339–5342 (1992)

    Article  Google Scholar 

  5. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equations: theory and applications. Phys. Rep. 222, 145–197 (1992)

    Article  Google Scholar 

  6. Chen, S.Y., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  7. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  8. Succi, S., Benzi, R.: Lattice Boltzmann equation for quantum mechanics. Physica D 69, 327–332 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Succi, S.: Numerical solution of the Schrödinger equation using Discrete Kinetic Theory. Phys. Rev. E 53, 1996 (1969/1975)

    Google Scholar 

  10. Chopard, B., Luthi, P.O.: Lattice Boltzmann computations and applications to physics. Theor. Comput. Sci. 217, 115–130 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yan, G.W.: A lattice Boltzmann equation for waves. J. Comput. Phys. 161, 61–69 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yepez, J.: Quantum lattice-gas model for the Burgers equation. J. Stat. Phys. 107, 203–224 (2002)

    Article  MATH  Google Scholar 

  13. Yan, G.W., Song, M.: Recovery of the solitons using a lattice Boltzmann model. Chin. Phys. Lett. 16, 109–110 (1999)

    Article  Google Scholar 

  14. Yan, G.W., Yuan, L.: Lattice Bhatnagar-Gross-Krook model for the Lorenz attractor. Physica D 154, 43–50 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Succi, S.: Lattice quantum mechanics: an application to Bose-Einstein condensation. Int. J. Mod. Phys. C 9, 1577–1585 (1998)

    Article  Google Scholar 

  16. Palpacelli, S., Succi, S., Spigler, R.: Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. Phys. Rev. E 76, 036712 (2007)

    Article  Google Scholar 

  17. Palpacelli, S., Succi, S.: Quantum lattice Boltzmann simulation of expanding Bose-Einstein condensates in random potentials. Phys. Rev. E 77, 066708 (2008)

    Article  Google Scholar 

  18. Zhou, J.G.: Lattice Boltzmann Methods for Shallow Water Flows. Springer, Berlin (2000)

    Google Scholar 

  19. Ginzburg, I.: Variably saturated flow described with the anisotropic lattice Boltzmann methods. Comput. Fluids 25, 831–848 (2006)

    Article  Google Scholar 

  20. Melchionna, S., Succi, S.: Lattice Boltzmann-Poisson method for electrorheological nanoflows in ion channels. Comput. Phys. Commun. 169, 203–206 (2005)

    Article  MATH  Google Scholar 

  21. Capuani, F., Pagonabarraga, I., Frenkel, D.: Discrete solution of the electrokinetic equations. J. Chem. Phys. 121, 973–986 (2004)

    Article  Google Scholar 

  22. Hirabayashi, M., Chen, Y., Ohashi, H.: The lattice BGK model for the Poisson equation. JSME Int. J. Ser. B Fluids Therm. Eng. 44, 45–52 (2001)

    Article  Google Scholar 

  23. Chai, Z.H., Shi, B.C.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32, 2050–2058 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, M.R., Wang, J.K., Chen, S.Y.: Roughness and cavitations effect on electro-osmotic flows in rough microchannels using the lattice Poisson-Boltzmann methods. J. Comput. Phys. 266, 836–851 (2007)

    Article  Google Scholar 

  25. Wang, H.M., Yan, G.W., Yan, B.: Lattice Boltzmann model based on the rebuilding-divergency method for the Laplace equation and the Poisson equation. J. Sci. Comput. doi:10.1007/s10915-010-9414-x (2010)

    Google Scholar 

  26. Yepez, J.: Relativistic path integral as a lattice-based quantum algorithm. Quantum Inf. Process. 4, 471–509 (2005)

    Article  MathSciNet  Google Scholar 

  27. Zhong, L.H., Feng, S.D., Dong, P., Gao, S.T.: Lattice Boltzmann schemes for the nonlinear Schrödinger equation. Phys. Rev. E 74, 036704 (2006)

    Article  Google Scholar 

  28. Zhang, J.Y., Yan, G.W.: Lattice Boltzmann model for the complex Ginzburg-Landau equation. Phys. Rev. E 81, 066705 (2010)

    Article  MathSciNet  Google Scholar 

  29. Mittal, R.C., Arora, G.: Quintic B-spline collocation method for numerical solution of the Kuramoto-Sivashinsky equation. Commun. Nonlinear Sci. Numer. Simul. 15, 2798–2808 (2009)

    Article  MathSciNet  Google Scholar 

  30. Uddin, M., Haq, S., Siraj-ul-Islam: A mesh-free numerical method for solution of the family of Kuramoto-Sivashinsky equations. Appl. Math. Comput. 201, 458–469 (2009)

    Article  MathSciNet  Google Scholar 

  31. Tadmor, E.: The well-posedness of the Kuramoto–Sivashinsky equation. SIAM J. Math. Anal. 17, 884–893 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55, 356–569 (1976)

    Article  Google Scholar 

  33. Hooper, A.P., Grimshaw, R.: Nonlinear instability at the interface between two viscous fluids. Phys. Fluids 28, 37–45 (1985)

    Article  MATH  Google Scholar 

  34. Khater, A.H., Temsah, R.S.: Numerical solutions of the generalized Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods. Comput. Math. Appl. 56, 1465–1472 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yan, X., Shu, C.W.: Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Eng. 195, 3430–3447 (2006)

    Article  MATH  Google Scholar 

  36. Lan, H., Wang, K.: Exact solutions for two nonlinear equations. J. Phys. A, Math. Gen. 23, 3923–3928 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Drain, P.G., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, New York (1989)

    Google Scholar 

  38. Fan, E.G., Zhang, H.Q.: A note on the homogeneous balance method. Phys. Lett. A 264, 403–406 (1998)

    Article  MathSciNet  Google Scholar 

  39. Lai, H.L., Ma, C.F.: Lattice Boltzmann method for the generalized Kuramoto-Sivashinsky equation. Physica A 388, 1405–1412 (2009)

    Article  MathSciNet  Google Scholar 

  40. Zhang, J.Y., Yan, G.W.: Lattice Boltzmann method for one and two-dimensional Burgers equation. Physica A 387, 4771–4786 (2008)

    Article  MathSciNet  Google Scholar 

  41. Dong, Y.F., Zhang, J.Y., Yan, G.W.: A higher-order moment method of the lattice Boltzmann model for the conservation law equation. Appl. Math. Model. 34, 481–494 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hirt, C.W.: Heuristic stability theory for finite-difference equations. J. Comput. Phys. 2, 339–355 (1968)

    Article  MATH  Google Scholar 

  43. Wang, J., Liu, R.X.: A new approach to design high-order schemes. J. Comput. Appl. Math. 134, 59–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gas. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  45. Yan, G.W., Zhang, J.Y., Dong, Y.F.: Numerical method based on the lattice Boltzmann model for the Fisher equation. Chaos 18, 023131 (2008)

    Article  MathSciNet  Google Scholar 

  46. Holdych, D., Noble, D.R., Georgiadis, J.G., et al.: Truncation error analysis of lattice Boltzmann methods. J. Comput. Phys. 193, 595–619 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Warming, R.F., Hyett, B.J.: The modified equation approach to the stability and accuracy analysis of finite difference method. J. Comput. Phys. 14, 159–179 (1974)

    Article  MathSciNet  Google Scholar 

  48. Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwu Yan.

Additional information

This work is Project 20092005 supported by Graduate Innovation Fund of Jilin University, and the Chuangxin Foundation of Jilin University (No. 2004CX041).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, L., Yan, G. & Li, T. Numerical Method Based on the Lattice Boltzmann Model for the Kuramoto-Sivashinsky Equation. J Sci Comput 49, 195–210 (2011). https://doi.org/10.1007/s10915-010-9455-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9455-1

Keywords

Navigation