Skip to main content
Log in

A Pseudospectral Penalty Scheme for 2D Isotropic Elastic Wave Computations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a pseudospectral scheme for solving 2D elastic wave equations. We start by analyzing boundary operators leading to the well-posedness of the problem. In addition, equivalent characteristic boundary conditions of common physical boundary conditions are discussed. These theoretical results are further employed to construct a Legendre pseudospectral penalty scheme based on a tensor product formulation for approximating waves on a general curvilinear quadrilateral domain. A stability analysis of the scheme is conducted for the case where a straight-sided quadrilateral element is used. The analysis shows that, by properly setting the penalty parameters, the scheme is stable at the semi-discrete level. Numerical experiments for testing the performance of the scheme are conducted, and the expected p- and h-convergence patterns are observed. Moreover, the numerical computations also show that the scheme is time stable, which makes the scheme suitable for long time simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carcion, J.M.: The wave equation in generalized coordinates. Geophysics 59, 1911–1919 (1994)

    Article  Google Scholar 

  2. Carcion, J.M.: A 2D Chebyshev differential operator for the elastic wave equation. Comput. Methods Appl. Mech. Eng. 130, 33–45 (1996)

    Article  Google Scholar 

  3. Carpenter, M.H., Kennedy, C.A.: Fourth order 2N-storage Runge-Kutta scheme. NASA-TM-109112 (NASA Langley Research Center, VA) (1994)

  4. Carpenter, M.H., Gottlieb, D.: Spectral methods on arbitrary grids. J. Comput. Phys. 129, 74–86 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Don, W.S., Gottlieb, D.: The Chebyshev-Legendre method: Implementing Legendre methods on Chebyshev points. SIAM J. Numer. Anal. 31, 1519–1534 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dumbser, M., Käser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes II. The three-dimension isotropic case. Geophys. J. Int. 167, 319–336 (2006)

    Article  Google Scholar 

  7. Funaro, D., Gottlieb, D.: A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations. Math. Comput. 51, 599–613 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Funaro, D., Gottlieb, D.: Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment. Math. Comput. 57, 585–596 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gordon, W.J., Hall, C.A.: Transfinite element methods: Blending-function interpolation over arbitrary curved element domains. Numer. Math. 21, 109–129 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gordon, W.J., Hall, C.A.: Construction of curvilinear co-ordinate systems and applications to mesh generations. Int. J. Numer. Methods Eng. 7, 461–477 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hesthaven, J.S.: A stable penalty method for the compressible Navier-Stokes equations II. One-dimensional domain decomposition schemes. SIAM J. Sci. Comput. 18, 658–685 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hesthaven, J.S.: A stable penalty method for the compressible Navier-Stokes equations III. Multi dimensional domain decomposition schemes. SIAM J. Sci. Comput. 20, 63–92 (1999)

    MathSciNet  Google Scholar 

  14. Hesthaven, J.S.: Spectral penalty methods. Appl. Numer. Math. 33, 23–41 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hesthaven, J.S., Gottlieb, D.: A stable penalty method for the compressible Navier-Stokes equations I. Open boundary conditions. SIAM J. Sci. Comput. 17, 579–612 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hesthaven, J.S., Gottlieb, D.: Stable spectral methods for conservation laws on triangles with unstructured grids. Comput. Methods Appl. Mech. Eng. 175, 361–381 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hesthaven, J.S., Rasmussen, J.J., Bergè, L., Wyller, J.: Numerical studies of localized wave fields governed by the Raman-extended derivative nonlinear Schrödinger equation. J. Phys. A: Math. Gen. 30, 8207–8224 (1997)

    Article  MATH  Google Scholar 

  18. Hesthaven, J.S., Teng, C.H.: Stable spectral methods on tetrahedral elements. SIAM J. Sci. Comput. 21, 2353–2380 (2000)

    Article  MathSciNet  Google Scholar 

  19. Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 186–221 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Igel, H.: Wave propagation in three-dimensional spherical sections by the Chebyshev spectral method. J. Comput. Phys. 57, 585–596 (1999)

    Google Scholar 

  21. Käser, M., Dumbser, M.: An arbitray high-order discontinuous Galerkin method for elastic waves on unstructured meshes—I. The two-dimensional isotropic case with external source terms. Geophys. J. Int. 166, 855–877 (2006)

    Article  Google Scholar 

  22. Käser, M., Dumbser, M., Puente, J., Igel, H.: An arbitray high-order discontinuous Galerkin method for elastic waves on unstructured meshes—III. Viscoelastic attenuation. Geophys. J. Int. 168, 224–242 (2007)

    Article  Google Scholar 

  23. Komatitsch, D., Tromp, J.: Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys. J. Int. 139, 806–822 (1999)

    Article  Google Scholar 

  24. Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave propagation—I. Validation. Geophys. J. Int. 149, 390–412 (2002)

    Article  Google Scholar 

  25. Komatitsch, D., Vilotte, J.P.: The spectral-element method: An efficients tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88, 368–392 (1998)

    Google Scholar 

  26. Nielsen, S.A., Hesthaven, J.S.: A multi-domain Chebyshev collocation method for predicting ultrasonic field parameters in complex material geometries. Ultrasonics 40, 177–180 (2002)

    Article  Google Scholar 

  27. Priolo, E., Carcione, J.M., Seriani, G.: Numerical simulation of interface waves by high-order spectral modeling techniques. J. Acoust. Soc. Am. 95, 681–693 (1994)

    Article  Google Scholar 

  28. Zeng, Y.Q., Liu, Q.H.: A multidomain PSTD method for 3D elastic wave equations. Bull. Seismol. Soc. Am. 94, 1002–1015 (2004)

    Article  Google Scholar 

  29. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland/Elsevier, Amsterdam/New York (1973)

    MATH  Google Scholar 

  30. Brekhovskikh, L.M., Goncharov, V.: Mechanics of Continua and Wave Dynamics, 2nd edn. Springer Series on Wave Phenomena, vol. 1. Springer, New York (1994)

    MATH  Google Scholar 

  31. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, New York (1986)

    Google Scholar 

  32. Funaro, D.: Polynomial Approximation of Differential Equations. Springer, New York (1992)

    MATH  Google Scholar 

  33. Funaro, D., FORTRAN routines for spectral methods. Available with software at: http://cdm.unimo.it/home/matematica/funaro.daniele/rout.htm

  34. Funaro, D.: Spectral Elements for Transport-Dominated Equations. Springer, New York (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hao Teng.

Additional information

This work is supported by National Science Council grant No. NSC 95-2120-M-001-003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, KA., Teng, CH. & Chen, MH. A Pseudospectral Penalty Scheme for 2D Isotropic Elastic Wave Computations. J Sci Comput 33, 313–348 (2007). https://doi.org/10.1007/s10915-007-9154-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9154-8

Keywords

Navigation