Skip to main content
Log in

On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

In this article we discuss singularly perturbed convection–diffusion equations in a channel in cases producing parabolic boundary layers. It has been shown that one can improve the numerical resolution of singularly perturbed problems involving boundary layers, by incorporating the structure of the boundary layers into the finite element spaces, when this structure is available; see e.g. [Cheng, W. and Temam, R. (2002). Comput. Fluid. V.31, 453–466; Jung, C. (2005). Numer. Meth. Partial Differ. Eq. V.21, 623–648]. This approach is developed in this article for a convection–diffusion equation. Using an analytical approach, we first derive an approximate (simplified) form of the parabolic boundary layers (elements) for our problem; we then develop new numerical schemes using these boundary layer elements. The results are performed for the perturbation parameter ε in the range 10−1–10−15 whereas the discretization mesh is in the range of order 1/10–1/100 in the x-direction and of order 1/10–1/30 in the y-direction. Indications on various extensions of this work are briefly described at the end of the Introduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng W., Temam R. (2002). Numerical approximation of one-dimensional stationary diffusion equations with boundary layers. Comput. Fluid. V.31, 453–466

    Article  MATH  MathSciNet  Google Scholar 

  2. Cheng W., Temam R., Wang X. (2000). New approximation algorithms for a class of partial differential equations displaying boundary layer behavior. Meth. Appl. Anal. V.7(2): 363–390

    MathSciNet  Google Scholar 

  3. Ciarlet P. G. (1978). The Finite Element Method for Elliptic Problems. North-Holland, New York.

  4. Eckhaus W. (1972). Boundary layers in linear elliptic singular perturbations. SIAM Rev. V.14, 225–270

    Article  MathSciNet  Google Scholar 

  5. Eckhaus W., and De Jager E.M. (1966). Asymptotic solutions of singular perturbation problems for linear differential equations of elliptic type. Arch. Rational Mech. Anal. V.23, 26–86

    Article  ADS  Google Scholar 

  6. Evans L.C. (1998). Partial Differential Equations. AMS, Providence Rhode Island.

    Google Scholar 

  7. Gilbarg D., Trudinger N.S. (1998). Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York

    Google Scholar 

  8. Goering H., Felgenhauer A., Lube G., Roose H.-G., Tobiska L. (1983). Singularly Perturbed Differential Equations. Akademie-Verlag, Berlin

    MATH  Google Scholar 

  9. Holmes M.H. (1995). Introduction to Perturbation Methods. Springer-Verlag, New York

    MATH  Google Scholar 

  10. Jung C. (2005). Numerical approximation of two-dimensional convection-diffusion equations with boundary layers. Numer. Meth. Partial Diff. Eq. V.21(3): 623–648

    Article  Google Scholar 

  11. Jung C. Numerical approximation of convection-diffusion equations in a channel using boundary layer elements. Appl. Numer. Math. To appear.

  12. Jung C., Temam R. (2005). Numerical approximation of two-dimensional convection-diffusion equations with multiple boundary layers. Int. J. Numer. Analy. Modeling. V.2(4): 367–408

    MathSciNet  Google Scholar 

  13. Jung, C., and Temam, R. Double-gyre problems and singular perturbation with numerical applications. In preparation.

  14. Knaub K.R., O’Malley R.E. (2004). The motion of internal layers in singularly perturbed advection–diffusion–reaction equations. Stud. Appl. Math. V.112(1): 1–15

    Article  MathSciNet  Google Scholar 

  15. Lions J.L. (1973). Perturbations singulières dans les problèmes aux limites et en contrôle optimal. (French) Lecture Notes in Mathematics, Vol. 323. Springer-Verlag, Berlin-New York

    Google Scholar 

  16. Larsson S., Thomée V. (2003). Partial Differential Equations with Numerical Methods. Springer-Verlag, Berlin

    MATH  Google Scholar 

  17. O’Malley R.E. (1977). Singular perturbation Analysis for Ordinary Differential Equations. Communications of the Mathematical Institute, Rijksuniversiteit Utrecht, Rijksuniversiteit Utrecht, Mathematical Institute, Utrecht

    Google Scholar 

  18. O’Malley R.E. (1991). Singular Perturbation Methods for Ordinary Differential Equations. Springer-Verlag, New York

    Google Scholar 

  19. O’Malley R.E. (2001). Naive singular perturbation theory. Special issue in memory of Richard Weiss. Math. Models. Meth. Appl. Sci. V.11(1): 119–131

    Article  MathSciNet  ADS  Google Scholar 

  20. Roos H.-G., Stynes M., Tobiska L. (1996). Numerical Methods for Singularly Perturbed Differential Equations. Springer-Verlag, Berlin

    MATH  Google Scholar 

  21. Schultz M.H. (1973). Spline Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ

    MATH  Google Scholar 

  22. Stynes M. (2005). Steady-state convection–diffusion problems Acta Numerica. Cambridge University Press, Cambridge, pp. 445–508.

    Google Scholar 

  23. Shih S., Kellogg R.B. (1987). Asymptotic analysis of a singular perturbation problem. SIAM J. Math. Anal. V.18, 1467–1511

    Article  MathSciNet  Google Scholar 

  24. Temam, R. (1997). Infinite dimensional dynamical systems in mechanics and physics, Appl. Math. Sci. Ser. Vol. 68. Springer-Verlag, New-York.

  25. Vishik M.I., Lyusternik L.A. (1957). Regular degeneration and boundary layer for linear differential equations with small parameter. Uspekki Mat. Nauk. 12, 3–122

    MATH  Google Scholar 

  26. Vretblad A. (2003). Fourier Analysis and Its Applications. Springer-Verlag, New-York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yeol Jung.

Additional information

Dedicated to David Gottlieb on his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, CY., Temam, R. On Parabolic Boundary Layers for Convection–Diffusion Equations in a Channel: Analysis and Numerical Applications. J Sci Comput 28, 361–410 (2006). https://doi.org/10.1007/s10915-006-9086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9086-8

Keywords

Mathematics Subject Classification (2000)

Navigation