Skip to main content
Log in

Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Level set methods [Osher and Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79 (1988) 12] have proved very successful for interface tracking in many different areas of computational science. However, current level set methods are limited by a poor balance between computational efficiency and storage requirements. Tree-based methods have relatively slow access times, whereas narrow band schemes lead to very large memory footprints for high resolution interfaces. In this paper we present a level set scheme for which both computational complexity and storage requirements scale with the size of the interface. Our novel level set data structure and algorithms are fast, cache efficient and allow for a very low memory footprint when representing high resolution level sets. We use a time-dependent and interface adapting grid dubbed the “Dynamic Tubular Grid” or DT-Grid. Additionally, it has been optimized for advanced finite difference schemes currently employed in accurate level set computations. As a key feature of the DT-Grid, the associated interface propagations are not limited to any computational box and can expand freely. We present several numerical evaluations, including a level set simulation on a grid with an effective resolution of 10243

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson D., and Sethian J.A. (1995). A fast level set method for propagating interfaces. J. Comput. Phys. 118(2): 269–277

    Article  MATH  MathSciNet  Google Scholar 

  2. Adalsteinsson D., and Sethian J.A. (1999). The fast construction of extension velocities in level set methods. J. Comput. Phys. 148:2–22

    Article  MATH  MathSciNet  Google Scholar 

  3. Breen, D., Fedkiw, R., Museth, K., Osher, S., Sapiro, G., and Whitaker, R. (2004). Level Sets and PDE Methods for Computer Graphics. ACM SIGGRAPH ’04 COURSE #27. ACM SIGGRAPH, Los Angeles, CA, August 2004. ISBN 1-58113-950-X.

  4. Bridson R. (2003). Compuational Aspects of Dynamic Surfaces. Ph.D., thesis, Stanford University, Stanford California

    Google Scholar 

  5. Chan T., and Vese L. (2001). Active contours without edges. IEEE Trans. Image Process. 10:266–277

    Article  MATH  Google Scholar 

  6. Droske, M., Meyer, B., Rumpf, M., and Schaller, C. (2001). An adaptive level set method for medical image segmentation. Lect. Notes Comput. Sci. pp. 412–422.

  7. Enright D., Fedkiw R., Ferziger J., and Mitchell I. (2002). A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183(1):83–116

    Article  MATH  MathSciNet  Google Scholar 

  8. Enright D., Losasso F., and Fedkiw R. (2005). A fast and accurate semi-lagrangian particle level set method. Comput. Struct 83(6–7):479–490

    Article  MathSciNet  Google Scholar 

  9. Fedkiw R., Aslam T., and Xu S. (1999). The ghost fluid method for deflagration and detonation discontinuities. J. Comput. Phys. 154:393–427

    Article  MATH  MathSciNet  Google Scholar 

  10. Foster, N., and Fedkiw, R. (2001). Practical animation of liquids. In ACM SIGGRAPH ’01, ACM Press, pp. 23–30

  11. Osher, S., Losasso, F., and Fedkiw, R. Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids (in review)

  12. Frisken S., and Perry R. (2003). Simple and efficient traversal methods for quadtrees and octrees. J. Graphics Tools 7(3):1–11

    Google Scholar 

  13. Gibou F., Fedkiw R., Caflisch R., and Osher S. (2003). A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19(1–3):183–199

    Article  MATH  MathSciNet  Google Scholar 

  14. Houston, B., Wiebe, M., and Batty, C. (2004). Rle sparse level sets. In Proceedings of the SIGGRAPH 2004 Conference on Sketches & Applications. ACM Press

  15. Leveque R.J. (1996). High-resolution conservative algorithms for advection in incompressible flow. SIAM 33(2):627–665

    MATH  MathSciNet  Google Scholar 

  16. Losasso, F., Gibou, F., and Fedkiw, R. (2004). Simulating water and smoke with an octree data structure. In ACM SIGGRAPH ’04, ACM Press, pp. 457–462

  17. Liu X.D., Osher S.J., and Chan T. (1994). Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115:200–212

    Article  MATH  MathSciNet  Google Scholar 

  18. Museth K., Breen D., Whitaker R., and Barr A. (2002). Level set surface editing operators. ACM Trans. on Graphics (Proc. SIGGRAPH) 21(3):330–338

    Google Scholar 

  19. Meyers, S. (1997). Effective C++ (2nd ed.): 50 Specific Ways to Improve Your Programs and Designs. Addison-Wesley Longman Publishing Co., Inc

  20. Milne, R. B. (2003). An Adaptive Level Set Method. Ph.D., thesis, Berkeley National Laboratory, Physics Division, Mathematics Department

  21. Min C. (2004). Local level set method in high dimension and codimension. J. Comput. Phys. 200:368–382

    Article  MATH  MathSciNet  Google Scholar 

  22. Nguyen, D., Fedkiw, R., and Jensen, H. W. (2002). Physically based modeling and animation of fire. In ACM SIGGRAPH ’02, ACM Press, pp. 721–728

  23. Osher S.J., and Fedkiw R.P. (2002). Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin

    Google Scholar 

  24. Osher S., and Paragios N (eds). (2003). Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag

  25. Osher S., and Sethian J. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  26. Osher S., and Shu C.W. (1991). High-order essentially nonoscillatory schemes for hamilton-jacobi equations. SIAM J. Num. Anal. 28:907–922

    Article  MATH  MathSciNet  Google Scholar 

  27. Peng D., Merriman B., Osher S., Zhao H., and Kang M. (1999). A pde-based fast local level set method. J. Comput. Phys. 155(2), 410–438

    MathSciNet  Google Scholar 

  28. Rudin L., Osher S., and Fatemi E. (1992). Nonlinear total variation based noise removal algorithms. Physica D 60:259–268

    Article  MATH  Google Scholar 

  29. Sussman M., Almgren A.S., Bell J.B., Colella P., Howell L.H., and Welcome M.L. (1999). An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 148:81–124

    Article  MATH  MathSciNet  Google Scholar 

  30. Samet H. (1990). Applications of Spatial Data Structures: Computer Graphics, Image Processing, GIS. Addison-Wesley, Reading, MA

    Google Scholar 

  31. Sethian J.A. (1996). A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. USA 93(4):1591–1595

    Article  MATH  MathSciNet  Google Scholar 

  32. Sethian J.A. (1999). Level Set Methods and Fast Marching Methods, Second edition. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  33. Stolte, N., and Kaufman, A. (1998). Parallel spatial enumeration of implicit surfaces using interval arithmetic for octree generation and its direct visualization. In Implicit Surfaces ’98, pp. 81–87

  34. Shu C.W., and Osher S. (1988). Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77:439–471

    Article  MATH  MathSciNet  Google Scholar 

  35. Sussman M., Smereka P., and Osher S. (1994). A level set approach to computing solutions to incompressible two-flow. J. Comput. Phys. 114:146–159

    Article  MATH  Google Scholar 

  36. Strain J.A. (1999). Tree methods for moving interfaces. J. Comput. Phys. 151(2):616–648

    Article  MATH  MathSciNet  Google Scholar 

  37. Tsitsiklis, J. N. (1994). Efficient algorithms for globally optimal trajectories. Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, LF, pp. 1368–1373

  38. Tsitsiklis J.N. (1995). Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Contr. 40:1528–1538

    Article  MATH  MathSciNet  Google Scholar 

  39. Whitaker R.T. (1998). A level-set approach to 3d reconstruction from range data. Int. J. Comput. Vision 29(3):203–231

    Article  Google Scholar 

  40. Westermann R., Kobbelt L., and Ertl T. (1999). Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces. Visual Comput. 15(2):100–111

    Article  Google Scholar 

  41. Zhao H., Osher S., Merrian B., and Kang M. (2000). Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method. Comput. Vision Image Understand. 80:294–314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Museth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, M.B., Museth, K. Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets. J Sci Comput 26, 261–299 (2006). https://doi.org/10.1007/s10915-005-9062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9062-8

Keywords

Navigation