Skip to main content

Advertisement

Log in

Ontogeny of domestic dogs and the developmental foundations of carnivoran domestication

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Whereas hundreds of breeds of domestic dogs are known, only several dozen domestic cat breeds are currently recognized, and the ferret is not classified into specific breeds. We studied pre- and postnatal patterns of development and growth in the domesticated forms of these three carnivoran species. We present the most comprehensive staging system for domestic dog embryos to date and define qualitative characters for phylogenetic comparisons. For postnatal development, we present analyses of new and literature measurements of cranial and limb proportions. We analyze changes in the progress of growth among different domestic dog and domestic cat breeds. All three domesticated forms drastically differ in the relative timing of prenatal development. This is correlated with ontogenetic plasticity at birth, which enables artificial selection to act. For postnatal development, we detected a greater shape variance in domestic dog ontogeny when compared to that of the domestic cat. We conclude that ontogenetic preconditions as well as body size constrain the species’ capability for artificial selection in domestic dogs and cats. However, we speculate that the human requirements for functional performance of their domesticates might render some developmental biases substantially. Although ferrets would be preferable for artificial selection given their plastic embryonic development, they have been of less interest for domestication due to their small body size - by which they were already well adapted for hunting in burrows - and due to the fact that other relevant tasks were already assumed by domestic cats and dogs since earlier phases of human cultural evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baumbach B (1999) Untersuchungen zum postnatalen Skelett- und Körperwachstum von Hunden der Rasse Rottweiler. Doctoral thesis, Universität Leipzig

  • Bischoff TLW (1845) Entwicklungsgeschichte des Hunde-Eies. Druck und Verlag von Friedrich Vieweg und Sohn, Braunschweig

    Google Scholar 

  • Blakemore C, Cummings RM (1975) Eye-opening in kittens. Vis Res 15(12):1417-1419

    Article  CAS  PubMed  Google Scholar 

  • Böhme U (1994) Untersuchungen zur postnatalen Entwicklung des Skelettes und der Körpermasse beim Hund. Doctoral thesis, Universität Leipzig

    Google Scholar 

  • Bonnet R (1897) Beiträge zur Embryologie des Hundes. Anat Hefte 9:419-512

    Article  Google Scholar 

  • Bonnet R (1901) Beiträge zur Embryologie des Hundes. Erste Fortsetzung. Anat Hefte 16(51):231-332

    Article  Google Scholar 

  • Bonnet R (1902) Beiträge zur Embryologie des Hundes. Zweite Fortsetzung. Anat Hefte(64/65):323-499

  • Clauss M, Dittmann MT, Mueller DWH, Zerbe P, Codron D (2014) Low scaling of a life history variable: analysing eutherian gestation periods with and without phylogeny-informed statistics. Mammal Biol 79:9-16.

  • Clutton-Brock J (1995) Origins of the dog: domestication and early history. In: Serpell J (ed) The Domestic Dog: its Evolution, Behaviour, and Interactions with People. Cambridge University Press, Cambridge, pp 7-20

  • Clutton-Brock J (1999a) A Natural History of Domesticated Mammals. Cambridge University Press, Cambridge

    Google Scholar 

  • Clutton-Brock J (1999b) A Natural History of Domesticated Mammals, Second edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Concannon, PW (2000) Canine pregnancy: predicting parturition and timing events of gestation. In: Concannon PW, England E, Verstegen J (eds) Recent Advances in Small Animal Reproduction. International Veterinary Information Service, Ithaca

    Google Scholar 

  • Coppinger R, Schneider R (1995) Evolution of working dogs. In: Serpell J (ed) The Domestic Dog: its Evolution, Behaviour, and Interactions with People. Cambridge University Press, Cambridge, pp 21-47

  • Curgy JJ (1965) Apparition et soudure des points d'ossification des membres chez les mammifères. Mem Mus Natl Hist Nat (NS) 32A:173-307

  • Diamond J (1999) Guns, Germs, and Steel – The Fates of Human Societies. Norton, New York

    Google Scholar 

  • Eizirik E, Murphy WJ (2009) Carnivores (Carnivora). In: Hedges SB, Kumar S (eds) The TimeTree of Life. Oxford University Press, New York, pp 504-507

    Google Scholar 

  • Evans HE (1993) Miller's Anatomy of the Dog, 3rd ed. Saunders, Philadelphia

    Google Scholar 

  • Evans HE, de Lahunta A (2013) Miller's Anatomy of the Dog. Elsevier Saunders, St. Louis

    Google Scholar 

  • Evans HE, Sack WO (1973) Prenatal development of domestic and laboratory mammals: growth curves, external features and selected references. Anat Histol Embryol 2:11-45

    Article  CAS  Google Scholar 

  • Fondon JW, Garner HR (2004) Molecular origins of rapid and continuous morphological evolution. Proc Natl Acad Sci USA 201:18058-18063

  • Fox JG, Marini RP (2014) Biology and Diseases of the Ferret. John Wiley & Sons, Hobroken

    Book  Google Scholar 

  • Germain D, Laurin M (2009) Evolution of ossification sequences in salamanders and urodele origins assessed through event-pairing and new methods. Evol Dev 11(2):170-190

    Article  PubMed  Google Scholar 

  • Gulamhusein AP, Beck F (1981) External features of the developing ferret embryo. Bibl Anat 19:236-246

    Google Scholar 

  • Hamilton WJ (1939) The early stages of the development of the ferret: the formation of the mesoblast and notochord. Trans Roy Soc Edinburgh 59:165-193, 7 pl.

    Google Scholar 

  • Hare WC (1961) The ages at which the centers of ossification appear roentgenographically in the limb bones of the dog. Am Vet Res 22:825-835

    CAS  Google Scholar 

  • Kaiser M (2003) Untersuchungen zum postnatalen Skelett- und Körperwachstum von Hunden der Rasse Berner Sennenhund. Doctoral thesis, Universität Leipzig

    Google Scholar 

  • Keibel F (1906) Die Entwickelung der äußeren Körperform der Wirbeltierembryonen, insbesondere der menschlichen Embryonen aus den ersten 2 Monaten. In: Hertwig O (ed) Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere. vol 1/2. Verlag von Gustav Fischer, Jena, pp 1-174

    Google Scholar 

  • Knospe C (2002) Periods and stages of the prenatal development of the domestic cat. Anat Histol Embryol 31:37-51

    Article  CAS  PubMed  Google Scholar 

  • Koyabu D, Werneburg I, Morimoto N, Zollikofer CPE, Forasiepi AM, Endo H, Kimura J, Ohdachi S D, Son NT, Sánchez-Villagra MR (2014) Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size. Nat Commun 5(3625):1-9

    Google Scholar 

  • Krämer E-M (2009) Der grosse Kosmos Hundeführer. Franckh-Kosmos Verlag, Stuttgart

    Google Scholar 

  • Krämer E-M (2013) Faszination Rassehunde – Herkunft & Aufgaben, Temperament & Wesen. Franckh-Kosmos Verlag, Stuttgart

    Google Scholar 

  • Kreher M (2005) Untersuchungen zum postnatalen Skelett- und Körperwachstum von Hunden der Rasse Drathaar-Foxterrier. Doctoral thesis, Universität Leipzig

    Google Scholar 

  • Künzel W, Breit S, Oppel M (2003) Morphometric investigations of breed-specific features in feline skulls and considerations on their functional implications. Anat Histol Embryol 32:218-223

    Article  PubMed  Google Scholar 

  • Larson G, Bradley DG (2014) How much is that in dog years? The advent of canine population genomics. PLoS Gen 10:e1004093

    Article  Google Scholar 

  • Lord K, Feinstein M, Smith B, Coppinger R (2013) Variation in reproductive traits of members of the genus Canis with special attention to the domestic dog (Canis familiaris). Behav Process 92:131-142 doi:10.1016/j.beproc.2012.10.009

    Article  Google Scholar 

  • Lüps P (1974) Biometrische Untersuchungen an der Schädelbasis des Haushundes. Zool Anz 192:383-413

    Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75, http://mesquiteproject.org.

  • Maier W (1999) On the evolutionary biology of early mammals - with methodological remarks on the interaction between ontogenetic adaptation and phylogenetic transformation. Zool Anz Festschrift D Starck 238(1-2):55-74

    Google Scholar 

  • Martin P (1986) An experimental study of weaning in the domestic cat. Behaviour 99(3):221-249

    Article  Google Scholar 

  • Mattoon JS (2011) Radiographic considerations of the young patient. In: Peterson ME, Kutzler MA (eds) Small Animal Pediatrics – the First 12 Months of Life. Elsevier Saunders, St. Louis, pp 34-43

  • Mehnert E (1897a) Kainogenese. Eine gesetzmässige Abänderung der embryonalen Entfaltung in Folge von erblicher Uebertragung in der Phylogenese erworbener Eigenthümlichkeiten. Morphol Arbeiten 7:1-156

    Google Scholar 

  • Mehnert E (1897b) Kainogenesis als Ausdruck differenter phylogenetischer Energien. Verlag von Gustav Fischer, Jena

    Google Scholar 

  • Mehnert E (1898) Biomechanik erschlossen aus dem Principe der Organogenese. Gustav Fischer, Jena

    Google Scholar 

  • Menotti-Raymond M, David VA, Pflueger SM, Lindblad-Toh K, Wade CM, O’Bien SJ, Johnson WE (2008) Patterns of molecular genetic variation among cat breeds. Genomics 91:1-11

    Article  CAS  PubMed  Google Scholar 

  • Midford PE, Garland T Jr, Maddison WP (2011) PDAP:PDTREE: A translation of the PDTREE application of Garland et al.'s Phenotypic Diversity Analysis Programs. http://www.mesquiteprojectorg/pdap_mesquite/

  • Miglino MA, Ambrósio CE, dos Santos Martins D, Wenceslau CV, Pfarrer C, Leiser R (2006) The carnivore pregnancy: the development of the embryo and fetal membranes. Theriogenology 66:1699-1702

    Article  PubMed  Google Scholar 

  • Moore DR (1982) Late onset of hearing in the ferret. Brain Res 253(1):309-311

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E (2009) Placental mammals (Eutheria). In: Hedges SB, Kumar S (eds) The TimeTree of Life. Oxford University Press, New York, pp 471-474

    Google Scholar 

  • Nussbaumer M (1978) Biometrischer Vergleich der Topogenesemuster an der Schädelbasis kleiner und mittelgroßer Hunde. Zeitschrift für Tierzüchtung und Züchtungsbiologie 95:1-14

    Article  Google Scholar 

  • Olmstead CE, Villablanca J (1980) Development of behavioral audition in the kitten. Physiol Behav 24(4):705-712

    Article  CAS  PubMed  Google Scholar 

  • Paternoster R, Brame R, Mazerolle P, Piquero A (1998) Using the correct statistical test for the equality of regression coefficients. Criminology 36:859-866

    Article  Google Scholar 

  • R-Core-Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org/.

  • Rempe U (1962) Über die Formenvermannigfaltigung des Iltis in der Domestikation. J Anim Breed Genet 77:229-233.

    Google Scholar 

  • RStudio-Team (2015) RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.

    Google Scholar 

  • Rüsse I, Sinowatz F (1991) Lehrbuch der Embryologie der Haustiere. Parey, Berlin, Hamburg

  • Salomon F, Flügge A, Hartmann J, Schulze A (2008) Das postnatale Wachstum des Skeletts und der Körpermasse von Hauskatzen. Kleintierpraxis 10(11):677-686

    Google Scholar 

  • Sánchez-Villagra MR, Geiger M, Schneider RA (2016) The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals. Roy Soc Open Sci 3(160107):12 pp., doi:10.1098/rsos.160107

  • Schubert D (2011) Untersuchungen zum postnatalen Skelett- und Körperwachstum von Hunden der Rasse West Highland White Terrier. Doctoral thesis, Universität Leipzig

    Google Scholar 

  • Scott JP (1958) Critical periods in the development of social behavior in puppies. Psychosom Med 20:42-54

    Article  CAS  PubMed  Google Scholar 

  • Sears KE, Goswami A, Flynn JJ, Niswander LA (2007) The correlated evolution of Runx2 tandem repeats, transcriptional activity, and facial length in Carnivora. Evol Dev 9(6):555-565

    Article  CAS  PubMed  Google Scholar 

  • Serpell JA (2014) Domestication and history of the cat. In: Turner DC, Bateson P (eds) Domestic Cat: The Biology of Its Behaviour, 3rd edn. Cambridge University Press, New York, pp 83-100

    Google Scholar 

  • Széky P (1969) Comparative growth on Putorius putorius L. and Putorius furo L. on the basis of their skeleton measurements. In: Fábián G (ed) Phaenoanalysis and Quantitative Inheritance. Akadémiai Kiadcó, Budapest, pp 49-71

    Google Scholar 

  • Townend L (2009) In the womb: dogs. National Geographic, Washington, USA

  • Turner DC (2000) The Domestic Cat: the Biology of its Behaviour. Cambridge University Press, Cambridge

    Google Scholar 

  • Vinke CM, Schoemaker NJ (2012) The welfare of ferrets (Mustela putorius furo T) – a review on the housing and management of pet ferrets. Appl Anim Behav Sci 139(3-4):155-168 doi:10.1016/j.applanim.2012.03.016

    Article  Google Scholar 

  • Wang X, Tedford RH (2008) Dogs: Their Fossil Relatives and Evolutionary History. Columbia University Press, Columbia

    Book  Google Scholar 

  • Wayne RK (1986a) Cranial morphology of domestic and wild canids: the influence of development on morphological change. Evolution 40:243–261

    Article  PubMed  Google Scholar 

  • Werneburg I (2009) A standard system to study vertebrate embryos. PLoS One 4:e5887, doi:10.1371/journal.pone.0005887

    Article  PubMed  PubMed Central  Google Scholar 

  • Werneburg I, Laurin M, Koyabu D, Sánchez-Villagra MR (in press) Evolution of organogenesis and the origin of altriciality in mammals. Evol Devel

  • Werneburg I, Polachowski KM, Hutchinson MN (2015) Bony skull development in the Argus monitor (Squamata, Varanidae, Varanus panoptes) with comments on developmental timing and adult anatomy. Zoology 118:255-280

  • Werneburg I, Sánchez-Villagra MR (2009) Timing of organogenesis support basal position of turtles in the amniote tree of life. BMC Evol Biol 9(82) doi:10.1186/1471-2148-9-82

  • Werneburg I, Sánchez-Villagra MR (2011) The early development of the echidna, Tachyglossus aculeatus (Mammalia: Monotremata), and patterns of mammalian development. Acta Zool 82(1):75-88 doi:10.1111/j.1463-6395.2009.00447.x

    Article  Google Scholar 

  • Werneburg I, Tzika AC, Hautier L, Asher RJ, Milinkovitch MC, Sánchez-Villagra MR (2013) Development and embryonic staging in non-model organisms: the case of an afrotherian mammal. J Anat 222:2-18

    Article  PubMed  Google Scholar 

  • Yeates T (1911) Studies in the embryology of the ferret. Anat Physiol 45(4):319-335

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Marcelo R. Sánchez-Villagra for discussion and for his generous and continuing support. In addition, we thank Robert J. Asher and two anonymous reviewers for their valuable comments on the manuscript. I.W. was financed by a SNF Advanced Postdoc Mobility Grant (P300P3_158526). M.G. was financed by SNF grant 31003A-149605 granted to M.R.S.-V.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ingmar Werneburg or Madeleine Geiger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werneburg, I., Geiger, M. Ontogeny of domestic dogs and the developmental foundations of carnivoran domestication. J Mammal Evol 24, 323–343 (2017). https://doi.org/10.1007/s10914-016-9346-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-016-9346-9

Keywords

Navigation