Skip to main content
Log in

Integrating Ontogeny of Echolocation and Locomotion Gives Unique Insights into the Origin of Bats

  • Review
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The evolutionary sequence of events that led to flight and echolocation in bats is a compelling question in biology. Fundamentally lacking from this discussion is the ontogeny of how these two systems become functionally integrated producing an evolutionary developmental model. We build such a model by integrating growth and development of the cochlea, larynx, and sound production with the ontogeny of locomotion in newborn bats. In addition, we use available fossil and molecular data along with patterns of high frequency vocalization in extant mammals to model probable evolutionary transitions in bats. We find clear evidence that the ability to hear high frequency echolocation-like sounds preceded the ability to produce it and that a simple echolocation system was likely inherited from a shrew-like ancestor and was not an in situ evolutionary innovation of bats. Refinement of this system coevolved with sustained flight, both ontogenetically and evolutionarily, leading to the sophisticated echolocation observed today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams RA, Pedersen SC (2000) Ontogeny, Functional Ecology and Evolution of Bats. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Adams RA, Shaw JB (2013) Time’s arrow and the evolutionary development of bat flight. In: Adams RA, Pedersen SC (eds) Bat Evolution, Ecology and Conservation. Springer Press, New York, pp 21–46

    Google Scholar 

  • Baguñà J, Garcia-Fernández J (2003) Evo-devo: the long and winding road. Internatl J Dev Biol 47:705–713

    Google Scholar 

  • Blumberg MS (1992) Rodent ultrasonic short calls: locomotion, biomechanics and communication. J Comp Psychol 106:360–365

    Article  CAS  PubMed  Google Scholar 

  • Boonman A, Bumrungsri S, Yovel Y (2014) Nonecholocating fruit bats produce biosonar clicks with their wings. Curr Biol 24:2962–2967

    Article  CAS  PubMed  Google Scholar 

  • Brown PE (1976) Vocal communication in the Pallid bat, Antrozous pallidus. Z Tierpsychol 41:34–54

    Article  CAS  PubMed  Google Scholar 

  • Brown PE, Grinnell AD (1980) Echolocation ontogeny in bats. In: Busnel RG, Fish JF (eds) Animal Sonar Systems. Plenum Press, New York, pp 355–377

    Chapter  Google Scholar 

  • Brown PE, Grinnell AD, Harrison JB (1978) The development of hearing in the pallid bat, Antrozous pallidus. J Comp Physiol A 126:169–182

    Article  Google Scholar 

  • Brown PE, Brown TW, Grinnell AD (1983) Echolocation, development, and vocal communication in the lesser bulldog bat, Noctilio albiventris. Behav Ecol Sociobiol 13:287–298

    Article  Google Scholar 

  • Buchler ER (1976) The use of echolocation by the wandering shrew (Sorex vagrans). Anim Behav 24: 858–873

    Article  Google Scholar 

  • Buchler ER (1980) The development of flight, foraging, and echolocation in the little brown bat (Myotis lucifugus). Behav Ecol Sociobiol 6: 211–218

    Article  Google Scholar 

  • Carter RT, Adams RA (2014) Ontogeny of the larynx and flight ability in Jamaican fruit bats (Phyllostomidae) with considerations for the evolution of echolocation. Anat Rec 297:1270–1277

    Article  Google Scholar 

  • Carter RT, Adams RA (2015) Postnatal ontogeny of the cochlea and flight ability in Jamaican fruit bats (Phyllostomidae) with implications for the evolution of echolocation. J Anat 226:301–308

    Article  PubMed  Google Scholar 

  • Carter RT, Shaw JB, Adams RA (2014) Ontogeny of vocalization in Jamaican fruit bats with implications for the evolution of echolocation. J Zool 293:25–32

    Article  Google Scholar 

  • Cooper LN, Sears KE (2013) How to grow a bat wing. In: Adams RA, Pedersen SC (eds) Bat Evolution, Ecology and Conservation. Springer Press, New York, pp 3–20

    Google Scholar 

  • Cretekos CJ, Wang Y, Green ED, Martin JF, Rasweiler JJ, Behringer RR (2008) Regulatory divergence modifies limb length between mammals. Genes Dev 22:121–124

    Article  Google Scholar 

  • Dallos P (2008) Cochlear amplification, outer hair cells and prestin. Curr Opin Neurobiol 18:370–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies KT, Maryanto JI, Rossiter SJ (2013) Evolutionary origins of ultrasonic hearing and laryngeal echolocation in bats inferred by morphological analysis of the inner ear. Front Zool 10:1–15

    Article  Google Scholar 

  • Denny SP (1976) Comparative anatomy of the larynx. In: Hincliffe R, Harrison DFN (eds) The Scientific Basis of Otolaryngology. Heinemann, London, pp 536–545

    Google Scholar 

  • Dial KP, Greene E, Irschick DJ (2008) Allometry of behavior. Trends Ecol Evol 23:394–401

    Article  PubMed  Google Scholar 

  • Eilam D (1997) Postnatal development of body architecture and gait in several rodent species. J Exp Biol 200:1339–1350

    CAS  PubMed  Google Scholar 

  • Eilam D, Shefer G (1997) The developmental order of bipedal locomotion in the jerboa (Jaculus orientalis ): pivoting, crawling, quadrupedalism and bipedalism. Dev Psychobiol 31:137–142

    Article  CAS  PubMed  Google Scholar 

  • Fanis E, Jones G (1995) Post-natal growth, mother-infant interactions and development of vocalizations in the vespertilionid bat Plecotus auritus. J Zool 235:85–97

    Article  Google Scholar 

  • Fattu JM, Suthers RA (1981) Subglottic pressure and the control of phonation by the echolocating bat, Eptesicus. J Comp Physiol A 143:465–475

    Article  Google Scholar 

  • Fenton MB, Faure PA, Ratcliffe JM (2012) Evolution of high duty cycle echolocation in bats. J Exp Biol 215:2935–2944

    Article  PubMed  Google Scholar 

  • Ferron J (1981) Comparative ontogeny of behaviour in four species of squirrels (Sciuridae). Z Tierpsychol 55:193–216

    Article  CAS  PubMed  Google Scholar 

  • Fischer MS, Schilling N, Schmidt M, Haarhaus D, Witte H (2002) Basic limb kinetics of small therian mammals. J Exp Biol 205:1315–1338

    PubMed  Google Scholar 

  • Forsman KA, Malquist MG (1988) Evidence for echolocation in the common shrew, Sorex araneus. J Zool 216:655–662

    Article  Google Scholar 

  • Gould E (1969) Communication in three genera of shrews (Soricidae): Suncus, Blarina, and Cryptotis. Behav Biol A 3:11–31

    Google Scholar 

  • Gould E (1971) Studies of maternal-infant communication and development of vocalizations in the bats Myotis and Eptesicus. Comm Behav Biol 5:263–313

    Google Scholar 

  • Gould E (1975) Experimental studies of the ontogeny of ultrasonic vocalizations in bats. Dev Psychobiol 8:333–346

    Article  PubMed  Google Scholar 

  • Gould E, Eisenberg JF (1966) Notes on the biology of the Tenrecidae. J Mammal 47:660–686

    Article  Google Scholar 

  • Griffin DR (1946) The mechanism by which bats produce supersonic sounds. Anat Rec 96:519

    CAS  PubMed  Google Scholar 

  • Gunnell GF, Simmons NB (2005) Fossil evidence and origin of bats. J Mammal Evol 12:209–246

    Article  Google Scholar 

  • Hand SJ, Weisbecker V, Beck RMD, Archer M, Godhelp H, Tennyson AJD, Worthy TH (2009) Bats that walk: a new evolutionary hypothesis for the terrestrial behaviour of New Zealand’s endemic mystacinids. BMC Evol Biol 9:169–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiryu S, Riquimaroux H (2011) Developmental changes in ultrasonic vocalizations by infant Japanese echolocating bats, Pipistrellus abramus. J Acoust Soc Am 130:EL147-EL153

    Article  PubMed  Google Scholar 

  • Ischer T, Ireland K (2009) Locomotion performance of green sea turtle hatchlings from the Heron Island Rookery, Great Barrier Reef. Mar Biol 156:1399–1409

    Article  Google Scholar 

  • Jablonka E, Lamb MJ (1998) Bridges between development and evolution. Biol Philos 13:119–124

    Article  Google Scholar 

  • Jin, L, Lin A, Sun K, Liu Y, Feng J (2011) Postnatal development of morphological features and vocalization in the pomona leaf-nosed bat Hipposideros pomona. Acta Theriol 56: 13–22

    Article  Google Scholar 

  • Jones G, Hughes PM, Rayner JMV (1991) The development of vocalization in Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) during post-natal growth and maintenance of vocal signatures. J Zool 225:71–84

    Article  Google Scholar 

  • Klingenberg CP (1998) Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol Rev 73:79–123

    Article  CAS  PubMed  Google Scholar 

  • Knörschild M, Von Helversen O, Mayer F (2007) Twin siblings sound alike: isolation call variation in the noctule bat, Nyctalus noctula. Anim Behav 74:1055–1063

    Article  Google Scholar 

  • Konstantinov AI (1973) Development of echolocation in bats in postnatal ontogensis. Period Biol 75:13–19

    Google Scholar 

  • Kössl M, Voss C, Mora EC, Macias S, Foeller E, Vater M (2012) Auditory cortex of newborn bats is prewired for echolocation. Nature Comm 3:773

    Article  Google Scholar 

  • Lammers AR, German RZ (2002) Ontogenetic allometry in the locomotor skeleton of specialized half-bounding mammals. J Zool 258: 485–495

    Article  Google Scholar 

  • Li G, Wang J, Rossiter SJ, Jones G, Cotton JA, Zang S (2008) The hearing gene Prestin reunites echolocating bats. Proc Natl Acad Sci USA 105:13959–13964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y, Liu Z, Shi P, Zhang J (2010) The hearing gene Prestin unites echolocating bats and whales. Curr Biol 20: R55-R56

    Article  CAS  PubMed  Google Scholar 

  • Liem, KF, Wake DB (1985) Morphology: current approaches and concepts. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional Vertebrate Morphology. Belknap Press of Harvard University Press, Cambridge, pp 366–377

    Google Scholar 

  • Liu Y, Feng J, Jiang YL, Wu L, Sun KP (2007) Vocalization development of greater horseshoe bat, Rhinolophus ferrumequinum (Rhinolophidae, Chiroptera). Folia Zool 56:126–136

    Google Scholar 

  • Lui Z, Li S, Wang W, Xu D, Murphy RW, Shi P (2011) Parallel evolution of KCNQ4 in echolocating bats. PLoS ONE doi:10.1371/journal.pone.0026618

    Google Scholar 

  • Meng J, Fox RC (1995) Osseous inner ear structures and hearing in early marsupials and placentals. Zool J Linn Soc-Lond 115: 47–71

    Article  Google Scholar 

  • Metzner W, Schuller G (2010) Vocal control in echolocating bats. In: Brudzynski SM (eds) Handbook of Mammalian Vocalizations and Intergrative Neuroscience Approach. Elsevier, Amsterdam, pp 403–415

    Chapter  Google Scholar 

  • Minelli A (2003) The Development Mechanisms at the Origin of Morphological Novelty. Cambridge University Press, Cambridge

    Google Scholar 

  • Monroy JA, Carter ME, Miller KE, Covey E (2011) Development of echolocation and communication vocalizations in the big brown bat, Eptesicus fuscus. J Comp Physiol A 197:459–467

    Article  Google Scholar 

  • Moss CF, Redish D, Gouden C, Kunz TH (1997) Ontogeny of vocal signals in the little brown bat, Myotis lucifugus. Anim Behav 54:131–141

    Article  PubMed  Google Scholar 

  • Müller GB (1990) Developmental mechanisms at the origin of morphological novelty: a side effects hypothesis. In: Nitecki MN (ed) Evolutionary Innovations. The University of Chicago Press, Chicago, pp 99–130

    Google Scholar 

  • Noirot E (1972) Ultrasounds and maternal behavior in small rodents. Dev Psychobiol 5:371–387

    Article  CAS  PubMed  Google Scholar 

  • Nyby J, Whitney G (1978) Ultrasound communication of adult myomorph rodents. Neurosci Biobeh Rev 2:1–14

    Article  Google Scholar 

  • Parker J, Tsakgogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter S (2013) Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502:228–231

    Article  CAS  PubMed  Google Scholar 

  • Parsons S, Riskin DK, Hermanson JW (2010) Echolocation call production during aerial and terrestrial locomotion by New Zealand’s enigmatic lesser short-tailed bat, Mystacina tuberculata. J Exp Biol 213:551–557

    Article  PubMed  Google Scholar 

  • Pedersen SC, Timm DW (2012) Echolocation, evo-devo and the evolution of bat crania. In: Gunnell GF, Simmons NB (eds) Evolutionary History of Bats: Fossils, Molecules and Morphology Cambridge University Press, Cambridge, pp 470–499

    Chapter  Google Scholar 

  • Roberts LH (1974) The functional anatomy of the rodent larynx in relation to audible and ultrasonic cry production. Zool J Linn Soc 56:255–264

    Article  Google Scholar 

  • Romer AS (1959) The Vertebrate Story. The University of Chicago Press, Chicago

    Google Scholar 

  • Rübsamen R (1987) Ontogenesis of the echolocation system in the rufous horseshoe bat, Rhinolophus rouxi (audition and vocalization in early postnatal development). J Comp Physiol A 161:899–913

    Article  PubMed  Google Scholar 

  • Sales G, Pye D (1974) Ultrasonic Communication by Animals. Chapman and Hall, London

    Book  Google Scholar 

  • Schilling N, Petrovitch A (2006) Postnatal allometry of the skeleton in Tupaia glis (Scandentia: Tupaiidae) and Galea musteloides (Rodentia: Caviidae) – A test of the three-segment limb hypothesis. Zoology 109:148–163

    Article  PubMed  Google Scholar 

  • Siemers BM, Schauermann G, Turni H, von Merten S (2009) Why do shrews twitter? Communication or simple echo-based echolocation. Biol Lett 5:593–596

    Article  PubMed  PubMed Central  Google Scholar 

  • Simmons JA, Fenton MB, O'Farrell MJ (1979) Echolocation and pursuit of prey by bats. Science 203:16–21

    Article  CAS  PubMed  Google Scholar 

  • Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2008) Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451:818–821

    Article  CAS  PubMed  Google Scholar 

  • Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2010) Inferring echolocation in ancient bats. Nature 466:939–942

    Article  Google Scholar 

  • Sterbing SJ (2002) Postnatal development of vocalizations and hearing in the phyllostomid bat, Carollia perspicillata. J Mammal 83: 516–525

    Article  Google Scholar 

  • Teeling EC, Madsen O, Van Den Bussche RA, de Jong WW, Stanhope MJ, Springer MS (2002) Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc Natl Acad Sci USA 99:1431–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teeling EC, Springer MS, Madsen O, Bates P, O’Brien WJ, Murphy J (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584

    Article  CAS  PubMed  Google Scholar 

  • Thiessen DD, Kittrell EMW (1979) Mechanical features of ultrasound emission in the mongolian gerbil Meriones unguiclatus. Am Zool 19:509–512

    Article  Google Scholar 

  • Tomasi TE (1979) Echolocation by the short-tailed shrew Blarina brevicauda. J Mammal 60:751–759

    Article  Google Scholar 

  • True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119

    Article  CAS  PubMed  Google Scholar 

  • Vater M (2000) Evolutionary plasticity and ontogeny of the bat cochlea. In: Adams RC, Pedersen SC (eds) Ontogeny, Functional Ecology, and Evolution of Bats. Cambridge University Press, Cambridge, pp 137–173

    Chapter  Google Scholar 

  • Vater M, Kössl M (2011) Comparative aspects of cochlear functional organization in mammals. Hear Res 273:89–99

    Article  PubMed  Google Scholar 

  • Vater M, Kössl M, Coro F, Mora E, Russell IJ (2003) Development of echolocation calls in the Mustached bat, Pteronotus parnellii. J Neurophysiol 90:2274–2290

    Article  CAS  PubMed  Google Scholar 

  • Veselka N, McErlain DD, Holdsworth DW, Eger JL, Chhem RK, Mason MJ, Brain KL, Faure PA, Fenton MB (2010) A bony connection signals laryngeal echolocation in bats. Nature 463:939–942

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Lin A, Xiao Y, Jiang T, Feng J (2014) Postnatal development in the big-footed bat, Myotis macrodactylus: wing morphology, echolocation calls, and flight. Acta Theriol 59:435–441

    Article  Google Scholar 

  • Westerga J, Gramsbergen A (1990) The development of locomotion in the rat. Dev Brain Res 57:163–174

    Article  CAS  Google Scholar 

  • Williams TL (1981) Experimental analysis of the gait and frequency of locomotion in the tortoise, with a simple mathematical description. J Physiol 310:307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witte HF, Biltzinger J, Hackert R, Schilling N, Schmidt M, Reich C, Fischer MS (2002) Torque patterns of the limbs of small therian mammals during locomotion on flat ground. J Exp Biol 205:1339–1353

    PubMed  Google Scholar 

  • Woolf NK (1973) The ontogeny of bat sonar sounds: with special emphasis on sensory deprivation. Dissertation. The Johns Hopkins University, Baltimore

    Google Scholar 

  • Young RL, Badyaev AV (2007) Evolution of ontogeny: linking epigenetic remodeling and genetic adaptation in skeletal systems. Integr Comp Biol 47:234–244

    Article  PubMed  Google Scholar 

  • Zhang L, Jones G, Parsons S, Liang B, Zhang S (2005) Development of vocalizations in the flat-headed bats, Tylonycteris pachypus and T. robustula (Chiroptera: Verspertilionidae). Acta Chiropter 7:91–99

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Brock Fenton, Scott Pedersen, and two anonymous reviewers for comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Carter.

Ethics declarations

Funding

The authors declare that there was no funding received for this research.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carter, R.T., Adams, R.A. Integrating Ontogeny of Echolocation and Locomotion Gives Unique Insights into the Origin of Bats. J Mammal Evol 23, 413–421 (2016). https://doi.org/10.1007/s10914-016-9324-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-016-9324-2

Keywords

Navigation