Skip to main content
Log in

Petrosal and Bony Labyrinth Morphology Supports Paraphyly of Elephantulus Within Macroscelididae (Mammalia, Afrotheria)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Interest in the phylogeny of Macroscelididae (sengis or elephant shrews) has been prompted by molecular studies indicating that Elephantulus rozeti is best placed as the sister group of Petrodromus tetradactylus (this clade being in turn the sister taxon to Macroscelides proboscideus) than among other species of the genus Elephantulus. Until now, no discrete morphological characters have been proposed to support the grouping of E. rozeti, Petrodromus, and Macroscelides into this single so-called ‘Panelephantulus’ clade. Here, we employed μCT scanning in order to investigate the petrosal and bony labyrinth (bony capsule of the inner ear) morphology of most species of extant Macroscelididae. We performed a cladistic analysis on ear traits and found that despite some convergences (e.g., concerning the bony arterial canals in Macroscelides and Rhynchocyon) the middle and inner ear morphology furnishes significant support for the ‘Panelephantulus’ clade. In our analysis, this clade is unambigously supported by the presence of a fully ossified stapediofacial tube. Two additional characters (the presence of a bony septum at the mouth of the fenestra cochleae dividing the D3 sinus into two distinct cavities and the absence of an accessory lateral pneumatic fossa) could also support ‘Panelephantulus.’ These newly discovered morphological characters support the molecular phylogenies published and highlight the importance of coding hitherto difficult to sample morphologies within cladistic analyses using micro-CT techniques. Taxonomic implications are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Asher RJ, Helgen KM (2010) Nomenclature and placental mammal phylogeny. BMC Evol Biol 10:102

    Article  PubMed Central  PubMed  Google Scholar 

  • Benoit J, Orliac M, Tabuce R (2012) The petrosal anatomy of Chambius, a primitive sengi (Macroscelidea, Afrotheria). Fundamental 20: 19-20A

    Google Scholar 

  • Benoit J, Orliac M, Tabuce R (2013) The petrosal of Chambius (Macroscelidea, Afrotheria) from the Eocene of Djebel Chambi (Tunisia) and the evolution of the ear region in sengis. J Syst Palaeontol DOI:10.1080/14772019.2012.713400

    Google Scholar 

  • Bloch JI, Silcox MT (2006) Cranial anatomy of the Paleocene plesiadapiform Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography, and the relationships of plesiadapiforms to Euprimates. J Hum Evol 50: 1–35

    Article  PubMed  Google Scholar 

  • Bremer K (1994) Branch support and tree stability. Cladistics 10: 295–304

    Article  Google Scholar 

  • Bugge J (1972) The cephalic arterial system in the insectivores and the primates with special reference to the Macroscelidoidea and Tupaioidea and the insectivore-primate boundary. Z Anat Entwicklungsgesch 135(3):279–300

    Google Scholar 

  • Bugge J (1974) The cephalic arterial system in insectivores, primates, rodents and lagomorphs with special reference to the systematic classification. Acta Anat 87: 1–60

    Google Scholar 

  • Butler PM (1969) Insectivores and bats from the Miocene of East Africa: new material. In: Leakey LSB (ed) Fossil Vertebrates of Africa, Vol 1. Academic Press, NewYork, pp 1–38

    Google Scholar 

  • Corbet GB (1995) A cladistic look at classification within the subfamily Macroscelidinae based upon morphology. Mammal Rev 25: 15–17

    Article  Google Scholar 

  • Corbet GB, Hanks J (1968) A revision of the sengis, family Macroscelididae. Bull Br Mus Nat Hist Zool Ser 16: 47–111

    Google Scholar 

  • Diamond MK (1989) Coarctation of the stapedial artery: an unusual adaptive response to competing functional demands in the middle ear of some eutherians. J Morphol 200(1): 71–86

    Article  CAS  PubMed  Google Scholar 

  • Douady CJ, Catzeflis F, Raman J, Springer MS, Stanhope MJ (2003) The Sahara as a vicariant agent, and the role of Miocene climatic events, in the diversification of the mammalian order Macroscelidea (sengis). Proc Natl Acad Sci USA 100: 8325–8330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ekdale EG (2009) Variation within the bony labyrinth of mammals. PhD dissertation, University of Texas

  • Evans FG (1942) The osteology and relationships of the elephant shrews (Macroscelididae). Bull Am Mus Nat Hist 80: 85–125

    Google Scholar 

  • Findlay GH (1944) The development of the auditory ossicles in the elephant shrew, the tenrec and the golden mole. Proc Zool Soc Lond 114: 91–99

    Article  Google Scholar 

  • Fleischer G (1973) Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen. Säugetierk Mitt 21: 131–239

    Google Scholar 

  • Geisler JH, Luo Z (1996) The petrosal and inner ear of Herpetocetus sp. (Mammalia: Cetacea) and their implications for the phylogeny and hearing of archaic mysticetes. J Paleontol 70: 1045–1066

    Google Scholar 

  • Heffner RS (2004) Primate hearing from a mammalian perspective. Anat Rec A 281A: 1111–1122

    Article  Google Scholar 

  • Holroyd PA (2010) Macroscelidea. In: Werdelin L, Sanders WJ (eds) Cenozoic Mammals of Africa. University of California Press, Berkeley, pp 89–98

    Chapter  Google Scholar 

  • Kuntner M, May-Collado LJ, Agnarsson I (2011) Phylogeny and conservation priorities of afrotherian mammals (Afrotheria, Mammalia). Zool Scripta 40: 1–15

    Article  Google Scholar 

  • MacPhee RDE (1981) Auditory regions of primates and eutherian insectivores: morphology, ontogeny, and character analysis. Contrib Primatol 18: 1–282

    Google Scholar 

  • MacPhee RDE, Cartmill M (1986) Basicranial structures and primate systematics. In: Swindler DR, Erwin J (eds) Comparative Primate Biology, Vol. 1: Systematics, Evolution, and Anatomy. Alan R. Liss, New York, pp 219–275

    Google Scholar 

  • Novacek M (1984) Evolutionary stasis in the sengi, Rhynchocyon. In: Eldredge N, Stanley SM (eds) Living Fossils. Springer, New York, pp 4–22

    Chapter  Google Scholar 

  • Novacek MJ (1986) The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull Am Mus Nat Hist 183: 1–111

    Google Scholar 

  • Prothero DP (1993) Ungulate phylogeny: molecular vs. morphological evidence. In: Szalay FS, Novacek MJ, McKenna MC (ed) Mammal Phylogeny: Placentals. Springer, New York, pp 173–181

    Chapter  Google Scholar 

  • Rathbun GB (2009) Why is there discordant diversity in sengi (Mammalia: Afrotheria: Macroscelidea) taxonomy and ecology? Afr J Ecol 47: 1–13

    Article  Google Scholar 

  • Saban R (1957) Les affinités du genre Tupaia Raffles 1821, d’après les caractères morphologiques de la tête osseuse. Ann Paléontol 43: 1–44

    Google Scholar 

  • Scalici M, Panchetti F (2011) Morphological cranial diversity contributes to phylogeny in soft-furred sengis (Afrotheria, Macroscelidea). Zoology 114 (2): 85–94

    Article  PubMed  Google Scholar 

  • Segall W (1970) Morphological parallelisms of the bulla and auditory ossicles in some insectivores and marsupials. Fieldiana Zool 51: 169–205

    Google Scholar 

  • Smit HA, Jansen van Vuuren B, O’Brien PCM, Ferguson-Smith M, Yang F, Robinson TJ (2011). Phylogenetic relationships of sengis (Afrotheria, Macroscelididae). J Zool 284: 133–143

    Article  Google Scholar 

  • Smit HA, Robinson TJ, Jansen Van Vuuren B (2007) Coalescence methods reveal the impact of vicariance on the spatial genetic structure of Elephantulus edwardii (Afrotheria, Macroscelidea). Mol Ecol 16: 2680–2692

    Article  CAS  PubMed  Google Scholar 

  • Smit HA, Robinson TJ, Watson J, Jansen Van Vuuren B (2008) A new species of sengi (Afrotheria: Macroscelidea: Elephantulus) from South Africa. J Mammal 89: 1257–1268

    Article  Google Scholar 

  • Spoor F, Zonneveld F (1995). Morphometry of the primate bony labyrinth: a new method based on high resolution computed tomography. J Anat 186: 271–286

    Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Tabuce R, Asher RJ, Lehmann T (2008) Afrotherian mammals: a review of current data. Mammalia 72: 2–14

    Article  Google Scholar 

  • Tandler J (1899) Zur vergleichenden Anatomie der Kopfarterien bei den Mammalia. Denkschr Kais Akad Wissensch Wien Math-Naturwissenschaftl Klasse 67: 677–784

    Google Scholar 

  • van der Klaauw CJ (1929) On the development of the tympanic region of the skull in the Macroscelididae. Proc Zool Soc Lond 99: 491–560

    Article  Google Scholar 

  • van der Klaauw CJ (1931) The auditory bulla in some fossil mammals. Bull Am Mus Nat Hist 62: 1–352

    Google Scholar 

  • Wible JR (1986) Transformations in the extracranial course of the internal carotid artery in mammalian phylogeny. J Vertebr Paleontol 6: 313–325

    Article  Google Scholar 

  • Wible JR 1987. The eutherian stapedial artery: character analysis and implications for superordinal relationships. Zool J Linn Soc 91: 107–1350

    Article  Google Scholar 

  • Wible JR, Rougier GW, Novacek MJ, Asher RJ (2009) The eutherian mammal Maelestes gobiensis from the Late Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria. Bull Am Mus Nat Hist 327: 1–123

    Article  Google Scholar 

Download references

Acknowledgments

Thanks go to J. Cuisin, C. Bens, and T. Afoukati (Museum National d’Histoire Naturelle de Paris), P. Giere, F. Mayer, N. Lange, and O. Hampe (Museum für Naturkunde, Berlin), M. Lowe (University Museum of Zoology of Cambridge), and M. Nowak-Kemp (Oxford University Museum of Natural History), Y. Dutour, G. Cheylan, N. Vialle, and P. Michelier (Museum d’Histoire Naturelle d’Aix-en-Provence) for granting access to collections. We are grateful to A. Heaver (University of Cambridge), N. Karjilov and A. Hilger (Helmholtz-Zentrum, Berlin) for their help and advice during micro-CT scan acquisition and Montpellier Rio Imaging for providing access to their Skyscan 1076 Micro-CT machine. We are also grateful of R. Asher, L. Hautier, L. Marivaux, S. Benoit-Vrard, M. Vianey-Liaud, J.R. Wible, and an unknown reviewer whose advice improved this manuscript. This work has been conducted with the financial support of the ANR-08-JCJC-0017 (PALASIAFRICA) program. This is ISEM publication 201X-XXX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Benoit.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 47 kb)

ESM 2

(RTF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benoit, J., Crumpton, N., Merigeaud, S. et al. Petrosal and Bony Labyrinth Morphology Supports Paraphyly of Elephantulus Within Macroscelididae (Mammalia, Afrotheria). J Mammal Evol 21, 173–193 (2014). https://doi.org/10.1007/s10914-013-9234-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-013-9234-5

Keywords

Navigation