Skip to main content
Log in

The Functional and Phylogenetic Implications of the Myology of the Lumbar Region, Tail, and Hind Limbs of the Lesser Grison (Galictis cuja)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Mustelids are a morphofunctionally diversified group. However, there are no descriptions of the postcranial musculature of South American mustelid species except for some comments from the 19th century. Here, we present the first description of the myology of the hind limbs, and lumbar, sacral, and caudal regions of the lesser grison (Galictis cuja), a short-legged South American mustelid, including muscle maps and weight data. We interpret the function and the evolution of several muscular features within a comparative framework and through the optimization of these traits onto a phylogeny. The configuration of the axial musculature (e.g., m. quadratus lumborum with short bundles, heavy iliocostalis, and forward originated sacrocaudalis dorsalis) and the presence of strong ankle musculature are features shared with mustelines and, to a lesser degree, with other musteloids. These could be related to a high mobility of the axial skeleton and strong control of the movement of the ankle joint, in relation to the acquisition of epigean bounding gaits, a crouched locomotion, and enhanced maneuverability inside burrows. We recorded many phylogenetically significant traits, shared with other arctoids (e.g., subdivision of m. gluteus profundus and semimembranosus, presence of a single belly for m. sartorius, and absence of articularis coxae) or exclusively musteloids (e.g., frequent fusion between m. piriformis and gluteus medius). Some features (e.g., restricted origin of the caudal belly of the m. semitendinosus, absence of gluteofemoralis, and unusually complex fibularis brevis) seem to be derived conditions acquired in some mustelid clades. Our results sustain the value of myological data for functional and phylogenetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander RM, Jayes DA (1980) Estimates of the bending moments exerted by the lumbar and abdominal muscles of some mammals. J Zool Lond 194:291–303

    Article  Google Scholar 

  • Alix ME (1876) Memoire sur la myologie du putois (Putorius communis, Cuv.). J Zool Paris 5:153–188

    Google Scholar 

  • Allen H (1882) The muscles of the limbs of the raccoon (Procyon lotor). Proc Acad Nat Sci Philadelphia 34:115–144

    Google Scholar 

  • Azara F (1802) Apuntamientos para la historia natural de los quadrúpedos del Paraguay y Río de la Plata. La Viuda de Ibarra, Madrid

    Google Scholar 

  • Barnett CH, Napier JR (1953) The form and mobility of the fibula in metatherian mammals. J Anat 87:207–213

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beddard FE (1900) On the anatomy of Bassaricyon alleni. Proc Zool Soc Lond 69:661–675

    Article  Google Scholar 

  • Beddard FE (1905) Some notes upon the anatomy of the ferret-badger, Helictis personata. Proc Zool Soc Lond 75:21–29

    Article  Google Scholar 

  • Beswick-Perrin J (1871) On the myology of the limbs of the kinkajou (Cercoleptes caudivolvulus). Proc Zool Soc Lond 1871:547–559

    Google Scholar 

  • Bisaillon A (1976) La musculature du membre pelvien du putois d’Amérique (Mustela nigripes, Audubon et Bachman). Anat Anz 139:486–504

    CAS  PubMed  Google Scholar 

  • Bryant HN, Seymour KL (1990) Observations and comments on the reliability of muscle reconstruction in fossil vertebrates. J Morphol 206:109–117

    Article  Google Scholar 

  • Cabrera A, Yepes J (1940) Mamíferos Sud-Americanos. Historia Natural Ediar, Companía Argentina de Editores, Buenos Aires

  • Carlon B, Hubbard C (2012) Hip and thigh anatomy of the clouded leopard (Neofelis nebulosa) with comparisons to the domestic cat (Felis catus). Anat Rec 295:577–589

    Article  Google Scholar 

  • Cuvier G, Laurillard M (1849) Recueil de Planches de Myologie. Dusacq, Paris

    Google Scholar 

  • Davis DD (1964) The giant panda: a morphological study of evolutionary mechanisms. Fieldiana: Zool Mem 3:1–339

    Google Scholar 

  • Dücker G (1968) Beobachtungen am kleinen Grison, Galictis (Grisonella) cuja (Molina). Z Säugetierk 33:288–297

    Google Scholar 

  • Evans HE (1993) Miller’s Anatomy of the Dog. W. B. Saunders Company, Philadelphia

    Google Scholar 

  • Evans HE, de Lahunta A (2010) Miller’s Guide to the Dissection of the Dog. W. B. Saunders Company, Philadelphia

    Google Scholar 

  • Evans HE, Quoc An N (1980) Anatomy of the ferret. In: Fox JG (ed) Biology and Diseases of the Ferret. Williams & Wilkins, Baltimore

    Google Scholar 

  • Ewer RF (1973) The Carnivores. Cornell University Press, New York

    Google Scholar 

  • Feeney S (1999) Comparative osteology, myology, and locomotor specializations of the fore and hind limbs of the North American foxes Vulpes vulpes and Urocyon cinereoargenteus. PhD Thesis, University of Massachusetts, Amherst

  • Fisher E (1942) The Osteology and Myology of the California River Otter. Stanford University Press, Stanford

    Google Scholar 

  • Fisher RE, Adrian B, Elrod C, Hicks M (2008) The phylogeny of the red panda (Ailurus fulgens): evidence from the hindlimb. J Anat 213:607–628

    Article  PubMed Central  PubMed  Google Scholar 

  • Fisher RE, Adrian B, Elrod C, Hicks M (2009) The phylogeny of the red panda (Ailurus fulgens): evidence from the forelimb. J Anat 215:611–35

    Article  PubMed Central  PubMed  Google Scholar 

  • Flynn JJ, Finarelli JA, Zehr S, Hsu J, Nedbal MA (2005) Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Syst Biol 54:317–337

    Article  PubMed  Google Scholar 

  • Gambaryan PP (1974) How Mammals Run. John Wiley & Sons, New York

    Google Scholar 

  • Gambaryan PP, Karapetjan WS (1961) Besonderheiten im Bau des Seelöwen (Eumetopias californianus), der Baikalrobbe (Phoca sibirica) und des Seeotters (Enhydra lutris) in Anpassung an die Fortbewegung im Wasser. Zool Jahrb 79:123–148

    Google Scholar 

  • García-Esponda CM, Candela AM (2010) Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance. Mammalia 74:407–422

    Google Scholar 

  • Goloboff PA, Farris JS, Nixon K (2008) TNT: a free program for phylogentic analysis. Cladistics 24:774–786

    Article  Google Scholar 

  • Gorsuch WA, Larivière S (2005) Vormela peregusna. Mammal Species 779:1–5

    Article  Google Scholar 

  • Gowell RC (1897) Myology of the hind limb of the raccoon. Kan Univ Quar 6:121–126

    Google Scholar 

  • Hall ER (1926) The muscular anatomy of three mustelid mammals, Mephitis, Spilogale, and Martes. Univ Calif Publ Zool 30:7–39

    Google Scholar 

  • Hall ER (1927) The muscular anatomy of the American badger (Taxidea taxus). Univ Calif Publ Zool 30:205–219

    Google Scholar 

  • Haughton S (1867a) On the muscular anatomy of the Irish terrier, as compared with that of the Australian dingo. Proc R Irish Acad Sci Ser 2 ix:504–507.

    Google Scholar 

  • Haughton S (1867b) On the muscular anatomy of the badger. Proc R Irish Acad Sci Ser 2 ix:507–508

    Google Scholar 

  • Haughton S (1867c) On the muscular anatomy of the otter (Lutra vulgaris). Proc R Irish Acad Sci Ser 2 ix:511–515

    Google Scholar 

  • Haughton S (1867d) On the muscles of the Virginian bear. Proc R Irish Acad Sci Ser 2 ix:508–511

    Google Scholar 

  • Hildebrand M (1988) Analysis of Vertebrate Structure. John Wiley & Sons, New York

    Google Scholar 

  • Holmes T (1980) Locomotor adaptations in the limb skeletons of North American mustelids. Master’s Thesis, Humboldt State University, California

  • Horner AM, Biknevicius AR (2010) A comparison of epigean and subterranean locomotion in the domestic ferret (Mustela putorius furo: Mustelidae: Carnivora). Zoology 113:189–197

    Article  PubMed  Google Scholar 

  • Howard LD (1975) Muscular anatomy of the hind limb of the sea otter (Enhydra lutris). Proc Calif Acad Sci 4th Series 40:335–416

    Google Scholar 

  • Hudson PE, Corr SA, Payne-Davis RC, Clancy SN, Lane E, Wilson AM (2010) Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb. J Anat 218:363–74

    Article  PubMed Central  PubMed  Google Scholar 

  • Hudson PE, Corr SA, Payne-Davis RC, Clancy SN, Lane E, Wilson AM (2011) Functional anatomy of the cheetah (Acinonyx jubatus) forelimb. J Anat 218:375–85

    Article  PubMed Central  PubMed  Google Scholar 

  • Julik E, Zack S, Adrian B, Maredia S, Parsa A, Poole M, Starbuck A, Fisher RE (2012) Functional anatomy of the forelimb muscles of the ocelot (Leopardus pardalis). J Mammal Evol. doi:10.1007/s10914-012-9191-4

  • Julitz C (1909) Osteologie und Myologie der Extremitäten und des Wickelschwanzes vom Wickelbären, Cercoleptes caudivolvulus, mit besonderer Berücksichtigung der Anpassungserscheinungen an das Baumleben. Arch Naturgesch Berlin 75:143–188

    Google Scholar 

  • King CM, Powell RA (2007) The Natural History of Weasels and Stoats. Oxford University Press, Oxford

    Book  Google Scholar 

  • Koepfli K-P, Deere KA, Slater GJ, Begg C, Begg K, Grassman L, Lucherini M,Veron G, Wayne RK (2008) Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol 6:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Koepfli K-P, Gompper ME, Eizirik E, Ho C-C, Linden L, Maldonado JE, Wayne RK (2007) Phylogeny of the Procyonidae (Mammalia: Carnivora): molecules, morphology and the Great American Interchange. Mol Phylogenet Evol 43:1076–1095

    Article  CAS  PubMed  Google Scholar 

  • Larivière S (2002). Ictonyx striatus. Mammal Species 698:1–5

    Article  Google Scholar 

  • Leach D (1977) The forelimb musculature of marten (Martes americana Turton) and fisher (Martes pennanti Erxleben). Can J Zool 55:31–41

    Article  CAS  PubMed  Google Scholar 

  • Leach D, de Kleer VS (1978) The descriptive and comparative postcranial osteology of marten (Martes americana Turton) and fisher (Martes pennanti Erxleben): the axial skeleton. Can J Zool 56:1180–1191

    Article  CAS  PubMed  Google Scholar 

  • Lucae JCG (1875) Die Robbe und die otter in ihrem knocken und muskel-skelet. Abh senckenb naturforsch Ges 8:277–378.

    Google Scholar 

  • Macalister A (1873a) On the anatomy of Aonyx. Proc R Irish Acad Sci Series 2 i:539–547

  • Macalister A (1873b) The muscular anatomy of the civet and tayra. Proc R Irish Acad Sci Ser 2 i:506–513

  • Mackintosh HW (1875) Notes on the myology of the coati-mondi (Nasua narica and N. fusca) and common marten (Martes foina). Proc R Irish Acad Sci Ser 2 ii:48–55

    Google Scholar 

  • Maynard Smith J, Savage RJG (1956) Some locomotory adaptations in mammals. Zool J Linn Soc 42:603–622

    Article  Google Scholar 

  • McClearn D (1985) Anatomy of raccoon (Procyon lotor) and coati (Nasua narica and N. nasua) forearm and leg muscles: relations between fiber length, moment-arm length, and joint angle excursion. J Morphol 183:87–115

    Article  CAS  PubMed  Google Scholar 

  • McClearn D (1992) Locomotion, posture, and feeding behavior of kinkajous, coatis, and raccoons. J Mammal 73:245–261

    Article  Google Scholar 

  • Meckel J-F (1828) Traité général d’anatomie comparée. Villeret et cie, Paris

    Google Scholar 

  • Mivart SGJ (1885) On the anatomy, classification and distribution of the Arctoidea. Proc Zool Soc Lond 23:340–404

    Google Scholar 

  • Moritz S, Fischer MS, Schilling N (2007) Three-dimensional fibre type distribution in the paravertebral muscles of the domestic ferret (Mustela putorius f. furo) with relation to functional demands during locomotion. Zoology 110:197–211

    Article  PubMed  Google Scholar 

  • Murie J (1871) On the female generative organs, viscera, and fleshy parts of Hyaena brunnea, Thunberg. Trans Zool Soc Lond 7:503–512

    Article  Google Scholar 

  • Parsons FG (1898). The muscles of mammals with special reference to human myology. J Anat Lond 32:721–752

    CAS  Google Scholar 

  • Payne RC, Hutchinson JR, Robilliard JJ, Smith NC, Wilson AM (2005) Functional specialisation of pelvic limb anatomy in horses (Equus caballus). J Anat 206:557–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pierard J (1965) Note sur l’insertion du muscle fibularis (peroneus) longus chez les mammiferes et particulierement chez le chien et le chat. Can Vet J 6:282–289

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ray LJ (1949) The myology of the inferior extremity of the Malay bear, Ursus malayanus. Proc Zool Soc Lond 119:121–132

    Article  Google Scholar 

  • Reighard J, Jennings HS (1901). Anatomy of the Cat. Henry Holt and Company, New York

    Book  Google Scholar 

  • Sato JJ, Wolsan M, Prevosti FJ, D’Elía G, Begg C, Begg K, Hosoda T, Campbell KL, Suzuki H (2012) Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea). Mol Phylogenet Evol 63:745–757

    Article  PubMed  Google Scholar 

  • Scherling A (1989) Zur Anatomie des Bewegungsapparates des Dachses (Meles meles L.). PhD Thesis, Universität Gießen, Gießen

  • Schilling N, Carrier DR (2010) Function of the epaxial muscles in walking, trotting and galloping dogs: implications for the evolution of epaxial muscle function in tetrapods. J Exp Biol 213:1490–1502

    Article  PubMed  Google Scholar 

  • Schutz H, Guralnick RP (2007) Postcranial element shape and function: assessing locomotor mode in extant and extinct mustelid carnivorans. Zool J Linn Soc 150:895–914

    Article  Google Scholar 

  • Shepherd FJ (1883) Short notes on the myology of the American black bear (Ursus americanus). J Anat Physiol 18:103–117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Simpson GG (1945) The principles of classification and a classification of mammals. Bull Am Mus Nat Hist 85:1–350

    Google Scholar 

  • Savage RJG (1957) The anatomy of Potamotherium, an Oligocene lutrine. Proc Zool Soc Lond 129:151–244

    Article  Google Scholar 

  • Slijper EJ (1946) Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Kon Ned Akad Wet Verh (Tweede Sectie) 42:1–128

    Google Scholar 

  • Souteyrand-Boulenger JD (1969) Le muscle articulaire de la hanche chez les carnivores. Mammalia 33:276–284

    Article  Google Scholar 

  • Spoor CF, Belterman TH (1986) Locomotion in Hyaenidae. Bijdr tot de Dierk 56: 24–28

    Google Scholar 

  • Spoor CF, Badoux DM (1988) Descriptive and functional myology of the back and hindlimb of the striped hyena (Hyaena hyaena, L. 1758). Anat Anz Jena 167:313–321

    CAS  Google Scholar 

  • Tarasoff FJ (1972) Anatomical observations on the river otter, sea otter and harp seal with reference to those structures that are of known significance in thermal regulation and diving. PhD Thesis, McGill University, Montreal

  • Tarasoff FJ, Bisaillon A, Pierard J, Whitt AP (1972) Locomotory patterns and external morphology of the river otter, sea otter, and harp seal (Mammalia). Can J Zool 50:915–929

    Article  CAS  PubMed  Google Scholar 

  • Taylor ME (1970) Locomotion in some East African viverrids. J Mammal 51:42–51

    Article  Google Scholar 

  • Taylor ME (1974) The functional anatomy of the forelimb of some African Viverridae (Carnivora). J Morphol 143:307–336

    Article  CAS  PubMed  Google Scholar 

  • Taylor ME (1976) The functional anatomy of the hindlimb of some African Viverridae (Carnivora). J Morphol 148:227–254

    Article  CAS  PubMed  Google Scholar 

  • Van de Graaff KM, Harper J, Goslow GE Jr (1982) Analysis of posture and gait selection during locomotion in the striped skunk (Mephitis mephitis). J Mammal 63:582–590

    Article  Google Scholar 

  • Van Valkenburgh B (1987) Skeletal indicators of locomotor behavior in living and extinct carnivores. J Vertebr Paleontol 7:162–182

    Article  Google Scholar 

  • Waibl H, Gasse H, Hashimoto Y, Burdas K-D, Constantinescu GM, Saber AS, Simoens P, Salazar I, Sotonyi P, Augsburger H, Bragulla H (2005) Nomina Anatomica Veterinaria. International Committee on Veterinary Gross Anatomical Nomenclature, World Association of Veterinary Anatomists, Hannover

    Google Scholar 

  • Walker C, Vierck CJ, Ritz LA (1998) Balance in the cat: role of the tail and effects of sacrocaudal transaction. Behav Br Res 91:41–47

    Article  CAS  Google Scholar 

  • Walmsley B, Hodgson JA, Burke RE (1978) Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J Neurophysiol 41:1203–1216

    CAS  PubMed  Google Scholar 

  • Watson M (1882) On the muscular anatomy of Proteles as compared with that of Hyaena and Viverra. Proc Zool Soc Lond 50:579–586

    Article  Google Scholar 

  • Williams RC (1955) The osteology and myology of the ranch mink (Mustela vison). PhD thesis, Cornell University Press, Ithaca

  • Williams SB, Payne RC, Wilson AM (2007) Functional specialisation of the pelvic limb of the hare (Lepus europeus). J Anat 210:472–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams SB, Daynes J, Peckham K, Payne RC (2008) Functional anatomy and muscle moment arms of the thoracic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris). J Anat 213:373–382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams SB, Wilson AM, Rhodes L, Andrews J, Payne RC (2008) Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris). J Anat 213:361–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson DE, Mittermeier RA (2009) Handbook of the Mammals of the World, Vol. 1. Carnivores. Lynx Editions, Barcelona

    Google Scholar 

  • Windle BCA (1888) Notes on the limb myology of Procyon cancrivorus and of the Ursidae. J Anat Physiol 23:81–89

    PubMed Central  CAS  PubMed  Google Scholar 

  • Windle BCA (1889) The flexors of the digits of the hand. J Anat Physiol 24:72–84

    PubMed Central  CAS  PubMed  Google Scholar 

  • Windle BCA, Parsons FG (1897) On the myology of the terrestrial Carnivora. Part I: muscles of the head, neck, and fore-limb. Proc Zool Soc Lond 65:370–409

    Article  Google Scholar 

  • Windle BCA, Parsons FG (1898) The myology of the terrestrial Carnivora. Part II. Proc Zool Soc Lond 66:152–186

    Article  Google Scholar 

  • Woods CA (1972) Comparative myology of jaw, hyoid, and pectoral appendicular regions of New and Old World hystricomorph rodents. Bull Am Mus Nat Hist 147:115–198

    Google Scholar 

  • Wroe S, Lowry MB, Antón M (2008) How to build a mammalian super-predator. Zoology 111:196–203.

    Article  PubMed  Google Scholar 

  • Yensen E, Tarifa T (2003) Galictis vittata. Mammal Species 727:1–8

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Francisco Prevosti for providing materials, ideas, and useful advice. We would like to thank David Flores and Valentina Segura (MACN) for granting access to material and installations under their care for many months, and to the staff of the Estación Hidrobiológica de Puerto Quequén (MACN) for granting access to installations under their care. We thank Sergio Bogan (CFA-Ma) and the Universidad Maimónides for granting access to additional material and installations under their care. We thank Itatí Olivares and Diego Verzi (MLP) for granting access to material under their care. We thank Sergio Lucero, Santiago Nenda, Yolanda Davies, Jésica Unger, Maximiliano Álvarez, and Mariano Ramírez for their recommendations and dedicated collaboration. We are very grateful to the Editor-in-Chief John Wible and two anonymous reviewers for their valuable comments that greatly improved this work. We also thank Daria Wingreen-Mason, Anna Perepelova, Analía Forasiepi, César García-Esponda, Adriana Candela, Sergio Monterroso, Cecilia Morgan, Carsten Wolf, Susanne Whitaker, Eric Yensen, Daniel Martinaeu, Steven Presley, Thomas Burkholder, Danny Walker, Thorvald Holmes, the Biodiversity Heritage Library, the Universitätsbibliothek Gießen, and the Flower-Sprecher Veterinary Library of the Cornell University, and especially to Rebecca Fisher and Emily Julik, for their invaluable help in bibliographic research.

Author contributions

M.D.E.: Concept and design. M.D.E., F.B., S.E. and G.F.T.: data collection and analysis. M.D.E., A.A. and M.M.M.: Draft of manuscript. M.D.E., A.A., F.B. and S.E.: Design of figures and tables. F.B. and S.E.: Critical review and approval of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos D. Ercoli.

Electronic supplementary material

Supporting Information

Additional Supporting Information can be found in the online version of this article:

Figure S11

Muscular characters definitions and optimization onto a combined phylogeny (after Flynn et al. 2005; Koepfli et al. 2007, 2008). Plain colors represent unambiguous states, dashed bi- or three colored lines indicate ambiguous states, and dashed gray line indicates unknown or non-applicable state (PDF 1.37 MB)

Table S1

Dry mass in grams (gr) of each muscle weighed in the three specimens of Galictis cuja analyzed (left and right limbs). “-” indicates that the corresponding muscle was weighed as separate parts or with other muscles, no marks indicates absence of the feature, and “?” indicates missing data (PDF 161 KB)

Table S2

Intraspecific variation observed among the three specimens of Galictis cuja analyzed (left and right limbs). “x” indicates side and specimen where the feature described is present, no marks indicates absence of the feature, and “?” indicates missing data (PDF 115 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ercoli, M.D., Echarri, S., Busker, F. et al. The Functional and Phylogenetic Implications of the Myology of the Lumbar Region, Tail, and Hind Limbs of the Lesser Grison (Galictis cuja). J Mammal Evol 20, 309–336 (2013). https://doi.org/10.1007/s10914-012-9219-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-012-9219-9

Keywords

Navigation